精英家教网 > 高中数学 > 题目详情
已知a、b为正数,点(xn,yn),由以下方法确定:直线y=-
b
a
x+b和y=
b
a
x的交点为(x1,y1),过点(0,b)和(xn-1,0)的直线与y=
b
a
x的交点为(xn,yn)(n≥2,x∈N+),求(xn,yn).
考点:进行简单的合情推理
专题:计算题,推理和证明
分析:求出x1=
a
2
,y1=
b
2
,(x2,y2)=(
a
3
b
3
),即可得出结论.
解答: 解:由题意,x1=
a
2
,y1=
b
2

过点(0,b)和(
a
2
,0)的直线是y=-
2b
a
x+b,它与y=
b
a
x的交点为(x2,y2)=(
a
3
b
3
).
∵过点(0,b)和(xn-1,0)的直线与y=
b
a
x的交点为(xn,yn)(n≥2,x∈N+),
∴xn=
a
n+1
,yn=
b
n+1
点评:本题考查简单的合情推理,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
ax3-x2(a>0)在(0,3)内不单调,则实数a的取值范围是(  )
A、a>
2
3
B、0<a<
2
3
C、0<a<
1
2
D、
2
3
<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(0,a),直线l:y=-a,其中a为定值且a>0,点N为l上一动点,过N作直线l1⊥l.l2为NF的中垂线,l1与l2交于点M,点M的轨迹为曲线C
(Ⅰ)求曲线C的方程;
(Ⅱ)若E为曲线C上一点,过点E作曲线C的切线交直线l于点Q,问在y轴上是否存在一定点,使得以EQ为直径的圆过该点,如果存在,求出该点坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为
x=5-
3
2
t
y=-
3
+
1
2
t
(t为参数),圆C的极坐标方程为ρ=4cos(θ-
π
3
).
(Ⅰ)求直线l和圆C的直角坐标方程;
(Ⅱ)若点P(x,y)在圆C上,求x+
3
y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的正三棱锥骰子(4个面的点数分别为1,2,3,4)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y.
(1)求事件“|x-y|=1”的概率.
(2)求点(x,y)落在
x+y≥3
2x+y≤8
x,y>0
的区域内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|,当a=1时,是否存在x∈[m,n],f(x)的取值范围为[
2
n
2
m
],若存在求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-ln(x+1-a)+1在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x-1)=x2-2x+q在[
1
2
,2]上恰有两个不相等的实数根,求实数q的取值范围;
(3)设g(x)=f(x-1),试比较
1
2-g(2)
+
1
3-g(3)
+…+
1
n-g(n)
3n2-n-2
n(n+1)
(n∈N*,n≥2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a<2,函数f(x)=(x2+ax+a)ex
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6•e-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-(a-2)x+4,当x=1时函数取得极值.
(1)求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案