精英家教网 > 高中数学 > 题目详情
已知a<2,函数f(x)=(x2+ax+a)ex
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6•e-2,求a的值.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)当a=1时,f′(x)=(x2+3x+2)ex,由此利用导数性质能求出f(x)的单调递增区间.
(2)f′(x)=[x2+(a+2)x+2a]ex,由f′(x)=0,得x=-2,或x=-a,列表讨论,能求出a的值.
解答: 解:(1)当a=1时,f(x)=(x2+x+1)ex
∴f′(x)=(x2+3x+2)ex
由f′(x)≥0,得x≤-2,或x≥-1,
∴f(x)的增区间为(-∞,-2],[-1,+∞).
(2)f′(x)=[x2+(a+2)x+2a]ex
由f′(x)=0,得x=-2,或x=-a,
列表讨论,得:
 x (-∞,-2)-2 (-2,-a)-a(-a,+∞) 
 f′(x)+ 0- 0+
 f(x) 极大值 极小值
∴x=-2时,f(x)取得极大值,
又f(-2)=(4-a)•e-2,f(x)的极大值是6•e-2
∴(4-a)•e-2=6•e-2,解得a=-2.
∴a的值为-2.
点评:本题考查函数单调区间的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次函数y=x2-(m+2)x+4,根据下列条件分别求实数m的取值范围.
(1)图象在x轴上方;
(2)顶点在x轴上;
(3)图象与x轴有两个交点;
(4)图象与x轴有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b为正数,点(xn,yn),由以下方法确定:直线y=-
b
a
x+b和y=
b
a
x的交点为(x1,y1),过点(0,b)和(xn-1,0)的直线与y=
b
a
x的交点为(xn,yn)(n≥2,x∈N+),求(xn,yn).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-1-alnx(a∈R).
(1)若曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,求实数a的值;
(2)若f(x)≥0恒成立,求证:a=1
(3)若a<0,且h(x)=f(x)+
4
x
在(0,1]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=
1
3
ax3-
3
2
x2+(a+1)x+5的一个极值点.
(1)求函数f(x)的解析式;
(2)若曲线y=f(x)与直线y=2x-2m+1有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L:x-y-1=0,L1:2x-y-2=0,若直线L2与L1关于直线L对称,求L2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+lg(x+1)-2.
(1)求函数f(x)的定义域;
(2)证明函数f(x)在定义域内为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x3-ax+b在点x=0处有极值y=1,求出a,b,并求出该函数在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2(a>0)的准线与圆x2+y2-6y-7=0相切,则a=
 

查看答案和解析>>

同步练习册答案