精英家教网 > 高中数学 > 题目详情
二次函数y=x2-(m+2)x+4,根据下列条件分别求实数m的取值范围.
(1)图象在x轴上方;
(2)顶点在x轴上;
(3)图象与x轴有两个交点;
(4)图象与x轴有公共点.
考点:二次函数的性质
专题:函数的性质及应用
分析:(1)若二次函数y=x2-(m+2)x+4图象在x轴上方,则△=(m+2)2-16<0;
(2)若二次函数y=x2-(m+2)x+4图象的顶点在x轴上,则△=(m+2)2-16=0;
(3)若二次函数y=x2-(m+2)x+4图象与x轴有两个交点,则△=(m+2)2-16>0;
(4)若二次函数y=x2-(m+2)x+4图象与x轴有交点,则△=(m+2)2-16≥0.
解答: 解:(1)若二次函数y=x2-(m+2)x+4图象在x轴上方,
则△=(m+2)2-16<0,
解得-6<m<2;
(2)若二次函数y=x2-(m+2)x+4图象的顶点在x轴上,
则△=(m+2)2-16=0,
解得m=-6,或m=2;
(3)若二次函数y=x2-(m+2)x+4图象与x轴有两个交点,
则△=(m+2)2-16>0,
解得m<-6,或m>2;
(4)若二次函数y=x2-(m+2)x+4图象与x轴有交点,
则△=(m+2)2-16≥0,
解得m≤-6,或m≥2;
点评:本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四组向量中,互相平行的有(  )组.
(1)
a
=(1,2,1),
b
=(1,-2,3);     
(2)
a
=(8,4,-6),
b
=(4,2,-3);
(3)
a
=(0,1,-1),
b
=(0,-3,3);     
(4)
a
=(-3,2,0),
b
=(4,-3,3).
A、一B、二C、三D、四

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
ax3-x2(a>0)在(0,3)内不单调,则实数a的取值范围是(  )
A、a>
2
3
B、0<a<
2
3
C、0<a<
1
2
D、
2
3
<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx-x,求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π
4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点
(1)证明:直线MN∥平面OCD;
(2)求0B与平面OCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)0.027 
1
3
-(-
1
7
-2+2.56 
3
4
-3-1+(
2
-1)0
(2)
lg8+lg125-lg2-lg5
lg
10
lg0.1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(0,a),直线l:y=-a,其中a为定值且a>0,点N为l上一动点,过N作直线l1⊥l.l2为NF的中垂线,l1与l2交于点M,点M的轨迹为曲线C
(Ⅰ)求曲线C的方程;
(Ⅱ)若E为曲线C上一点,过点E作曲线C的切线交直线l于点Q,问在y轴上是否存在一定点,使得以EQ为直径的圆过该点,如果存在,求出该点坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为
x=5-
3
2
t
y=-
3
+
1
2
t
(t为参数),圆C的极坐标方程为ρ=4cos(θ-
π
3
).
(Ⅰ)求直线l和圆C的直角坐标方程;
(Ⅱ)若点P(x,y)在圆C上,求x+
3
y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a<2,函数f(x)=(x2+ax+a)ex
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6•e-2,求a的值.

查看答案和解析>>

同步练习册答案