精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-1-alnx(a∈R).
(1)若曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,求实数a的值;
(2)若f(x)≥0恒成立,求证:a=1
(3)若a<0,且h(x)=f(x)+
4
x
在(0,1]上为减函数,求实数a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,建立等式关系即可求出a的值;
(2)讨论a的符号使f(x)≥0恒成立,求出a的值即可;
(3)求导数,分离参数求最值,即可求实数a的取值范围.
解答: (1)解:∵f'(x)=1-
a
x
,∴f'(1)=1-a
∴曲线y=f(x)在x=1处的切线的斜率为1-a
∵曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,
∴1-a=3,解得a=-2.
(2)证明:f'(x)=1-
a
x
,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,∴函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-1-alna
∵f(1)=0,∴当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1
(3)解:∵h′(x)=
x2-ax-4
x2
,h(x)=f(x)+
4
x
在(0,1]上为减函数,
∴x2-ax-4≤0在(0,1]上恒成立,
∴a≥x-
4
x
在(0,1]上恒成立,
∵y=x-
4
x
在(0,1]上是增函数,
∴y=x-
4
x
的最大值为-3,
∴a≥-3,
∵a<0,
∴-3≤a<0.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及恒成立问题的应用,同时考查了计算能力,转化与化归的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx-x,求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为
x=5-
3
2
t
y=-
3
+
1
2
t
(t为参数),圆C的极坐标方程为ρ=4cos(θ-
π
3
).
(Ⅰ)求直线l和圆C的直角坐标方程;
(Ⅱ)若点P(x,y)在圆C上,求x+
3
y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|,当a=1时,是否存在x∈[m,n],f(x)的取值范围为[
2
n
2
m
],若存在求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-ln(x+1-a)+1在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x-1)=x2-2x+q在[
1
2
,2]上恰有两个不相等的实数根,求实数q的取值范围;
(3)设g(x)=f(x-1),试比较
1
2-g(2)
+
1
3-g(3)
+…+
1
n-g(n)
3n2-n-2
n(n+1)
(n∈N*,n≥2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+a2|+|x+2a-5|.
(Ⅰ)当a=1时,解不等式f(x)<5;
(Ⅱ)若关于x的不等式f(x)<5有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a<2,函数f(x)=(x2+ax+a)ex
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6•e-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
a
x,0≤x≤a
1
1-a
(1-x),a<x≤1
a为常数且a∈(0,1).
(1)当a=
1
2
时,求f(f(
1
3
));
(2)f(f(x)).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点P的直线?绕点P按逆时针方向旋转α角(0<α<
π
2
),得到直线x-y-2=0,若继续按逆时针方向旋转
π
2
-α角,得到直线2x+y-1=0,则直线?的方程为
 

查看答案和解析>>

同步练习册答案