精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设数列{bn}满足bn+2=3log
1
4
an(n∈N*).
(1)求数列{an+bn}的前n项和为Sn
(2)若数列{cn}满足cn=an•bn,若cn
1
4
m2+m-1对一切正整数n恒成立,求实数m的取值范围.
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知条件求出an=(
1
4
)n
,bn=3n-2,所以an+bn=(
1
4
)n+(3n-2)
,由此能求出数列{an+bn}的前n项和Sn
(2)cn=an•bn=(3n-2)×(
1
4
)n
,n∈N*.由cn+1-cn=9(1-n)•(
1
4
)n=1
,得当n=1时,cn取最大值是
1
4
.由此能求出实数m的取值范围.
解答: 解:(1)∵数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,
an=(
1
4
)n
,n∈N*
bn=3log
1
4
an-2
,∴bn=3n-2,
∴an+bn=(
1
4
)n+(3n-2)

∴Sn=
1-(
1
4
)n
3
+
n(n+1)
2

(2)∵an=(
1
4
)n
,bn=3n-2,
∴cn=an•bn=(3n-2)×(
1
4
)n
,n∈N*
∵cn+1-cn=(3n+1)•(
1
4
n+1-(3n-2)•(
1
4
)n

=9(1-n)•(
1
4
)
n-1
,n∈N*
∴当n=1时,cn取最大值是
1
4

cn
1
4
m2+m-1
对一切正整数n恒成立,
1
4
m2+m-1≥
1
4

整理,得m2+4m-5≥0,
解得m≥1,或m≤-5.
点评:本题考查数列的前n项和的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:∅⊆{0};q:{1}∈{1,2}.由它们构成的以下三个命题中,真命题有(  )
①p∧q  ②p∨q  ③¬p.
A、1个B、2个C、3个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
4
)+cos(x-
4
),x∈R.
(1)求f(x)的最小正周期和最值;
(2)已知cos(β-α)=
4
5
,cos(β+α)=-
4
5
,(0<α<β≤
π
2
),求证:[f(β)]2-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-2x(x∈R),g(x)=m+4ln(x+1)(-1<x≤4).
(Ⅰ)求f(x)在x=1处的切线方程;
(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且仅有两个不同的交点?若存在,求出m的值或范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=2-3i,z2=
15-5i
(2+i)2
.求:
(1)z1•z2
(2)
z1
z2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2ax-a2+1
x2+1
(x∈R),其中a>0.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间及在(-1,+∞)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-a2-2a<0},B={y|y=3x-2a,x≤2}.
(Ⅰ)若a=3,求A∪B;
(Ⅱ)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定数列{an}:
1
1+
2
1+
2+
3
,…,
1+
2+
3+
…+
n

(1)判断a2是否为有理数,证明你的结论;
(2)是否存在常数M>0.使an<M对n∈N*都成立?若存在,找出M的一个值,并加以证明; 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有6本不同的书,按下列要求各有多少种不同的分法:
(Ⅰ)分为三份,每份2本;
(Ⅱ)分给甲、乙、丙三人每人2本;
(Ⅲ)分给甲、乙、丙三人;
(Ⅳ)分给甲、乙、丙三人,每人至少1本.
(最后结果请用数字表示).

查看答案和解析>>

同步练习册答案