精英家教网 > 高中数学 > 题目详情
5.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=$\frac{1}{2}$AD,∠BAD=∠ABC=90°,E是PD的中点.
(Ⅰ)证明:直线CE∥平面PAB;
(Ⅱ)点M为棱PC 的中点,求二面角M-AB-D的余弦值.

分析 (Ⅰ)取PA的中点F,连接EF,BF,只需证明BCEF是平行四边形,可得CE∥BF,即可得直线CE∥平面PAB;
(Ⅱ) 取AD的中点O,M在底面ABCD上的射影N为OC的中点.
取AB的中点Q,连接MQ,NQ,即可得∠MQN就是二面角M-AB-D的平面角,解直角三角形MNQ即可得二面角M-AB-D的余弦值

解答 解(Ⅰ)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,
所以EF∥AD且EF=AD,AB=BC=$\frac{1}{2}$AD,∠BAD=∠ABC=90°,∴BC∥$\frac{1}{2}$AD,
∴BCEF是平行四边形,可得CE∥BF,BF?平面PAB,CF?平面PAB,
∴直线CE∥平面PAB;
(Ⅱ)解:四棱锥P-ABCD中,
侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=$\frac{1}{2}$AD,
∠BAD=∠ABC=90°,E是PD的中点.
取AD的中点O,M在底面ABCD上的射影N为OC的中点.
取AB的中点Q,连接MQ,NQ
设AD=2,则AB=BC=1,OP=$\sqrt{3}$,
所以∠MQN就是二面角M-AB-D的平面角.
由在直角三角形MNQ中,$MN=\frac{1}{2}PO=\frac{{\sqrt{3}}}{2},NQ=1,MQ=\sqrt{{1^2}+{{({\frac{{\sqrt{3}}}{2}})}^2}}=\frac{{\sqrt{7}}}{2}$
二面角M-AB-D的余弦值为:$\frac{NQ}{MQ}=\frac{1}{{\frac{{\sqrt{7}}}{2}}}=\frac{{2\sqrt{7}}}{7}$

点评 本题考查了线面平行的判定,几何法求二面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.之前国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是(  )
A.2013年农民工人均月收入的增长率是10%
B.2011年农民工人均月收入是2205元
C.2009年到2013年这五年中2013年农民工人均月收入最高
D.小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集为R,集合A={x|y=log2(1-2-x)},B={x|y=$\sqrt{-{x}^{2}+6x-8}$},则A∩∁RB=(  )
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x<2或x>4}D.{x|0<x≤2或x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-1)sinx+2cosx+x.
( I)求曲线y=f(x)在点(0,f(0))处的切线方程.
( II)求函数f(x)在区间[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
 租用单车数量x(千辆) 3 4 5 8
 每天一辆车平均成本y(元)3.2  2.4 21.9  1.7
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
  租用单车数量x(千辆) 2 3 4 5 8
 每天一辆车平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估计值$\stackrel{∧}{{y}_{i}}$(1)  2.4 2.1  1.6
 残差$\stackrel{∧}{{e}_{i}}$(1)  0-0.1  0.1
模型乙 估计值$\stackrel{∧}{{y}_{i}}$ (2)  2.3 21.9  
残差$\stackrel{∧}{{e}_{i}}$(2)  0.1 0 0 
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入8.4元;投放1万辆时,该公司平均一辆单车一天能收入7.6元.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.化简:(1)sin(-α)sin(π-α)-2cos2(-α)+1=-cos2α;
(2)$\frac{cos(α-π)•tan(4π-α)}{sin(-2π-α)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an+1=3an-an-1(n≥2),a1=a2=1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设单位向量$\overrightarrow{e}$=(cos$α,\frac{1}{3}$),则cos2α的值为(  )
A.$\frac{7}{9}$B.-$\frac{1}{2}$C.-$\frac{7}{9}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是等差数列,且不等式x2-a4x+a1<0的解集为(3,6).
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,求Sn的最大值及此时n的值.

查看答案和解析>>

同步练习册答案