精英家教网 > 高中数学 > 题目详情

已知公差不为0的等差数列的前n项和为,且成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前n项和.

(1);(2)

解析试题分析:本题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识,考查化归与转化思想,考查思维能力、分析问题与解决问题的能力和计算能力.第一问,利用等差数列的通项公式,前n项和公式将展开,利用等比中项得出,再利用通项公式将其展开,两式联立解出,从而得出数列的通项公式;第二问,将第一问的结论代入,再利用等比数列的定义证明数列是等比数列,利用分组求和法,求出的值.
试题解析:(Ⅰ)设等差数列的公差为.
因为,所以.  ①
因为成等比数列,所以.   ②      2分
由①,②可得:.                          4分
所以.                                    6分
(Ⅱ)由题意,设数列的前项和为,
,所以数列为以为首项,以为公比的等比数列  9分
所以               12分
考点:1.等差数列的通项公式;2. 等比数列的通项公式;3. 等差数列的前n项和公式;4.等比数列的前n项和公式;5.等比中项;6.分组求和法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x-1)2g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并证明数列{bn-1}是等比数列;
(2)若数列{cn}满足cn,证明:c1c2c3+…+cn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:
(Ⅰ)求的通项公式及前项和
(Ⅱ)若等比数列的前项和为,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}的首项a1=1,公差d>0,且分别是等比数列{}的b2,b3,b4
(I)求数列{}与{{}的通项公式;
(Ⅱ)设数列{}对任意自然数n均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足是数列的前项和.
(1)若数列为等差数列.
(ⅰ)求数列的通项
(ⅱ)若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,前n项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列前n项和为,比较与2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知数列为首项为1的等差数列,其公差,且成等比数列.
(1)求的通项公式; 
(2)设,数列的前项和,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,.
(1)证明:数列是等比数列,并求数列的通项公式;
(2)在数列中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若,求证:使得成等差数列的点列在某一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,数列中,,且点在直线上.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的通项公式;
(Ⅲ)若,求数列的前项和.

查看答案和解析>>

同步练习册答案