精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax-b
x2+1
与函数g(x)=
1
2
lnx在点(1,0)处有公共的切线.
(1)求函数f(x)的解析式;
(2)求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.
考点:利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)求函数的导数,根据导数的几何意义即可求函数f(x)的解析式;
(2)构造函数,求函数的导数,利用导数求函数的最值即可.
解答: 解:(1)由g(1)=0,g′(1)=
1
2
得f(1)=0,f′(1)=
1
2

∴f(1)=
a-b
2
=0,化简得a=b
由f′(x)=
a(x2+1)-2x(ax-b)
(x2+1)2
=
-ax2+2bx+a
(x2+1)2
得:
f′(1)=
-a+2b+a
4
=
1
2
,联立解得:a=1,b=1
∴f(x)=
x-1
x2+1

(2)由已知得lnx≥
2x-2
x2+1
在[1,+∞)上恒成立
化简(x2+1)lnx≥2x-2,
即x2lnx+lnx-2x+2≥0在[1,+∞)上恒成立
设h(x)=x2lnx+lnx-2x+2,
h′(x)=2xlnx+x+
1
x
-2

∵x≥1,
∴2xlnx≥0,x+
1
x
≥2
,即h′(x)>0
∴h(x)在[1,+∞)上单调递增,
则h(x)≥h(1)=0,
∴g(x)≥f(x)在x∈[1,+∞)上恒成立.
点评:本题主要考查导数的几何意义以及导数的应用,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的一个焦点与抛物线x2=8y的焦点重合,且其渐近线的方程为
3
x±y=0,则该双曲线的标准方程为(  )
A、
x2
3
-y2=1
B、
y2
3
-x2=1
C、
x2
9
-
y2
16
=1
D、
x2
16
-
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点做切线L2,且l1∥l2,则称曲线y=f(x)具有“可平行性”,现有下列命题:
①偶函数的图象都具有“可平行性”;
②函数y=sinx的图象具有“可平行性”;
③三次函数f(x)=x3-x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=
2
3

④要使得分段函数f(x)=
x+
1
x
(x>m)
ex-1(x<0)
的图象具有“可平行性”,当且仅当实数m=1.
其中的真命题是
 
(写出所有命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等差数列{an}满足a1=1,且a1,a2,a5成等比数列.
(1)求等差数列{an}的通项an
(2)设bn=an+2an+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

用三段论证明:直角三角形两锐角之和为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
2
,右焦点为F2(2
2
,0),点A1,A2分别为左、右顶点,点P为此双曲线在第一象限内的点,设tan∠PA1A2+tan∠PA2F2=m,则有(  )
A、m<2B、m≤2
C、m>2D、m≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

一物体在力F(x)=4x+2(力的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=5处(单位:m),则力F(x)所作的功
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,且点A(an,an+1)(n∈N*)在直线y=x+2上,数列{bn}的前n项和为Sn,且Sn=2bn-2(n∈N*
(Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设cn=bnsin2
2
-ancos2
2
(n∈N*),求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

某项工程的工作明细表如表:
工作代码紧前工作工期(天)
A4
BA6
CB3
DC,G10
ED,H4
FA3
GF10
HC,G8
绘制该工程的网络图,并写出最短总工期.

查看答案和解析>>

同步练习册答案