精英家教网 > 高中数学 > 题目详情
已知递增的等差数列{an}满足a1=1,且a1,a2,a5成等比数列.
(1)求等差数列{an}的通项an
(2)设bn=an+2an+1,求数列{bn}的前n项和Sn
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列的通项公式和等比数列的性质,求出首项和公差,由此能求出an=2n-1.
(2)由bn=an+2an+1=2n-1+22n=(2n-1)+4n,利用错位相减法能求出数列{bn}的前n项和Sn
解答: (本题满分12分)
解:(1)∵a1,a2,a5成等比数列
a22=a1a5,(a1+d)2=a1(a1+4d)…(2分)
∴d2=2a1d…(1分)
∵d>0,a1=1,∴d=2,…(1分)
∴an=a1+(n-1)d=2n-1.…(2分)
(2)∵bn=an+2an+1=2n-1+22n=(2n-1)+4n…(2分)
∴Sn=b1+b2+b3+…+bn
=(1+4)+(3+42)+(5+43)+…+[(2n-1)+4n]
=(1+3+5+…+2n-1)+(4+42+43+…+4n)…(2分)
=
n(1+2n-1)
2
+
4(1-4n)
1-4
=n2+
4n+1
3
-
4
3
…(2分)
点评:本题主要考查数列的通项公式、前n项和公式的求法,考查等差数列、等比数列等基础知识,考查抽象概括能力,推理论证能力,运算求解能力,考查化归与转化思想、函数与方程思想,解题时要注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当a>0时,函数f(x)=(x2-2ax)ex的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x(x≤0)
f(x-3)(x>0)
,则f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,且对任意n∈N*,点(an,Sn)都在函数f(x)=-
1
2
x+
1
2
的图象上.
(1)求{an}的通项公式;
(2)若bn=log 
1
3
a2n+1,Tn为数列{bn}的前项和,且
1
T1
+
1
T2
+…+
1
Tn
≤x2+ax+1对任意正整数n和任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂对某产品的产量与成本的资料分析后有如下数据:
产量x千件2356
成本y万元78912
(1)求成本y与产量x之间的线性回归方程(结果保留两位小数);
(2)试估计产品产量达到一万件时所花费的成本费用.
附:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+xlnx(a∈R)
(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;
(2)当a=1且k∈z时,不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax-b
x2+1
与函数g(x)=
1
2
lnx在点(1,0)处有公共的切线.
(1)求函数f(x)的解析式;
(2)求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

若在x∈[0,
π
2
]上,有两个不同的实数值满足方程cos2x+
3
sin2x=k+1,则k的取值范围是(  )
A、[-2,1]
B、[-2,1)
C、[0,1]
D、[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200千米和350千米,设地球半径为R千米,则此飞船轨道的离心率为
 
(结果用R的式子表示).

查看答案和解析>>

同步练习册答案