精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求的值;
(2)当时,求函数的最大值和最小值.

(1);(2)最小值,最大值.

解析试题分析:本题主要考查诱导公式、倍角公式、降幂公式、两角和与差的正弦公式、三角函数最值等基础知识,考查学生的分析问题解决问题的能力、运用数学公式计算的能力,考查学生的数形结合思想.第一问,先利用诱导公式、倍角公式、降幂公式、两角和与差的正弦公式化简表达式,使之化简为的形式,再将代入求三角函数值;第二问,将已知x的范围代入第一问化简的表达式中,求出角的范围,再数形结合得到最大值和最小值.
(1)



所以.                                          7分
(2)当时,
所以,当时,即时,函数取得最小值
时,即时,函数取得最大值.       13分
考点:诱导公式、倍角公式、降幂公式、两角和与差的正弦公式、三角函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数的部分图象如图所示.
(1)写出的最小正周期及图中的值;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数
(1)当时,求函数的最小值和最大值;
(2)设ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=2,若向量m=(1,a)与向量n=(2,b)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数的图象与直线y=m相切,相邻切点之间的距离为.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数直线图像的任意两条对称轴,且的最小值为
求函数的单调增区间;
(2)求使不等式的取值范围.
(3)若的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)
(I)求f(x)的最小正周期;
(II)若函数y=f(x)的图象按=()平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 
(1)最小正周期及对称轴方程;
(2)已知锐角的内角的对边分别为,且 ,,求边上的高的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当A=1时,求f(x)的单调递增区间;
(2)当A>0,且x∈[0,π]时,f(x)的值域是[3,4],求A,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(l)求函数的最小正周期;
(2)当时,求函数f(x)的单调区间。

查看答案和解析>>

同步练习册答案