精英家教网 > 高中数学 > 题目详情
计算:log3
3
 
+log816+4log413
考点:对数的运算性质
专题:计算题,函数的性质及应用
分析:log3
3
 
=
1
2
,8=23,16=244log413=13.
解答: 解:log3
3
 
+log816+4log413
=
1
2
+
4
3
log22+13
=
1
2
+
4
3
+13=14
5
6
点评:本题考查了对数的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的定义域:y=
1
x2-3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、若向量
a
b
,则存在唯一的实数λ使 
a
b
B、已知向量
a
b
为非零向量,则“
a
b
的夹角为钝角”的充要条件是“
a
b
<0”
C、“若 θ=
π
3
,则 cosθ=
1
2
”的否命题为“若 θ≠
π
3
,则 cosθ≠
1
2
D、若命题 p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
y2
3
-x2=1的下焦点F作抛物线C:x2=2py(p>0)的两条切线,切点分别为AB,若FA⊥FB,则抛物线的方程为(  )
A、x2=2y
B、x2=4y
C、x2=6y
D、x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线方程是y=-
3
x,它的一个焦点在抛物线y2=-24x的准线上,则双曲线的方程为(  )
A、
x2
36
-
y2
108
=1
B、
x2
27
-
y2
9
=1
C、
x2
108
-
y2
56
=1
D、
x2
9
-
y2
27
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在原点,焦点在x轴上,椭圆短轴的一个顶点B与两个焦点F1,F2组成的△BF1F2的周长为4+2
2
,且∠BF1F2=45°,求这个椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级的学生纪律检查小组由16位同学组成,其中一、二、三、四班各有4人从中任选3人,要求这3人不能选自同一个班,且一班最多选1人,则不同的选法的种数为(  )
A、232B、272
C、424D、472

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cosx-sinx.
(1)若f(x)=2cosx-sinx=
5
sin(x+α),则角α的象限;
(2)当f(x)取得最大值时,求此时tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P(4m,m),圆C:x2+y2-2x-4y+3=0,判断点P和圆C的位置关系.

查看答案和解析>>

同步练习册答案