分析 (1)设N(6,n),则圆N为:(x-6)2+(y-n)2=n2,n>0,从而得到|7-n|=|n|+5,由此能求出圆N的标准方程.
(2)由题意得OA=2$\sqrt{5}$,kOA=2,设l:y=2x+b,则圆心M到直线l的距离:d=$\frac{|5+b|}{\sqrt{5}}$,由此能求出直线l的方程.
(3)$\overrightarrow{TA}+\overrightarrow{TP}$=$\overrightarrow{TQ}$,即|$\overrightarrow{TA}$|=$\sqrt{(t-2)^{2}+{4}^{2}}$,又|$\overrightarrow{PQ}$|≤10,得t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$],对于任意t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$],欲使$\overrightarrow{TA}=\overrightarrow{PQ}$,只需要作直线TA的平行线,使圆心到直线的距离为$\sqrt{25-\frac{|TA{|}^{2}}{4}}$,由此能求出实数t的取值范围.
解答 解:(1)∵N在直线x=6上,∴设N(6,n),
∵圆N与x轴相切,∴圆N为:(x-6)2+(y-n)2=n2,n>0,
又圆N与圆M外切,圆M:x2+y2-12x-14y+60=0,即圆M:(x-6)2+(x-7)2=25,
∴|7-n|=|n|+5,解得n=1,
∴圆N的标准方程为(x-6)2+(y-1)2=1.
(2)由题意得OA=2$\sqrt{5}$,kOA=2,设l:y=2x+b,
则圆心M到直线l的距离:d=$\frac{|12-7+b|}{\sqrt{{2}^{2}+1}}$=$\frac{|5+b|}{\sqrt{5}}$,
则|BC|=2$\sqrt{{5}^{2}-{d}^{2}}$=2$\sqrt{25-\frac{(5+b)^{2}}{5}}$,BC=2$\sqrt{5}$,即2$\sqrt{25-\frac{(5+b)^{2}}{5}}$=2$\sqrt{5}$,
解得b=5或b=-15,
∴直线l的方程为:y=2x+5或y=2x-15.
(3)设P(x1,y1),Q(x2,y2),
∵A(2,4),T(t,0),$\overrightarrow{TA}+\overrightarrow{TP}=\overrightarrow{TQ}$,
∴$\left\{\begin{array}{l}{{x}_{2}={x}_{1}+2-t}\\{{y}_{2}={y}_{1}+4}\end{array}\right.$,①
∵点Q在圆M上,∴(x2-6)2+(y2-7)2=25,②
将①代入②,得(x1-t-4)2+(y1-3)2=25,
∴点P(x1,y1)即在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,
从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,
∴5-5≤$\sqrt{[(t+4)-6]^{2}+(3-7)^{2}}$≤5+5.
解得2-2$\sqrt{21}$≤t$≤2+2\sqrt{21}$,
∴实数t的取值范围是[2-2$\sqrt{21}$,2+2$\sqrt{21}$].
点评 本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{13}$ | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com