精英家教网 > 高中数学 > 题目详情
18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为($\sqrt{5}$,0),则a=1,b=2.

分析 由双曲的一条渐近线为2x+y=0,一个焦点为($\sqrt{5}$,0),列出方程组,由此能出a,b.

解答 解:∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为($\sqrt{5}$,0),
∴$\left\{\begin{array}{l}{\frac{b}{a}=2}\\{\sqrt{{a}^{2}+{b}^{2}}=\sqrt{5}}\end{array}\right.$,
解得a=1,b=2.
故答案为:1,2.

点评 本题考查双曲线中实数值的求法,是基础题,解题时要认真审题,注意双曲线的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=cos2x+6cos($\frac{π}{2}$-x)的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):
A班6    6.5    7    7.5    8
B班6     7    8     9     10    11    12
C班3    4.5   6    7.5     9    10.5    12    13.5
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如果实数x,y满足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y的最大值6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a>b>0,0<c<1,则(  )
A.logac<logbcB.logca<logcbC.ac<bcD.ca>cb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

同步练习册答案