精英家教网 > 高中数学 > 题目详情
12.等差数列{an}中的a1,a4031是函数f(x)=$\frac{1}{3}{x^3}-4{x^2}$+12x+1的极值点,则log2a2016(  )
A.3B.2C.4D.5

分析 利用导数即可得出函数的极值点,再利用等差数列的性质及其对数的运算法则即可得出.

解答 解:f′(x)=x2-8x+12,
∵a1、a4031是函数f(x)=$\frac{1}{3}$x3-4x2+12x+1的极值点,
∴a1、a4031是方程x2-8x+12=0的两实数根,则a1+a4031=8.而{an}为等差数列,
∴a1+a4031=2a2016,即a2016=4,
从而${log}_{2}^{{a}_{2016}}$=${log}_{2}^{4}$=2.
故选:B.

点评 熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.根据下列给出的条件能得出△ABC为钝角三角形有(  )
①sinA+cosA=$\frac{1}{4}$;             ②$\overrightarrow{AC}•\overrightarrow{CB}$=-$\frac{1}{3}$;
③sin2A+sin2B>sin2C;         ④AB=3,AC=2,sinB=$\frac{1}{3}$.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数在某一点的导数是(  )
A.在该点的函数值的增量与自变量的增量的比
B.一个函数
C.一个常数,不是变数
D.函数在这一点到它附近一点之间的平均变化率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-kx,其中k∈R,
(Ⅰ)若k=e,试确定函数f(x)的单调区间;
(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;
(Ⅲ)求证:当k>ln2-1且x>0时,f(x)>x2-3kx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)的图象关于x=$\frac{π}{4}$对称,则函数y=f($\frac{3π}{4}$-x)是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点$(\frac{3π}{2},0)$对称
C.奇函数且它的图象关于点$(\frac{3π}{2},0)$对称
D.奇函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的导数:
(1)y=(2x3-1)(3x2+x);
(2)y=tanx;
(3)y=e0.05x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.变量ξ~N(4,σ2),P(ξ>2)=0.6,则P(ξ>6)=(  )
A.0.4B.0.3C.0.2D.0.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x,y为正实数,若4x2+y2+xy=2,则2x+y-xy的最大值为$\frac{17}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正数a,b满足a+b=4.
(1)求ab的取值范围;
(2)求$\frac{2}{a}+\frac{1}{b}$的最小值;
(3)$\sqrt{a+1}$+$\sqrt{b+1}$的最大值;
(4)(a+$\frac{9}{a}$)(b+$\frac{9}{b}$)的最小值.

查看答案和解析>>

同步练习册答案