精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)的图象关于x=$\frac{π}{4}$对称,则函数y=f($\frac{3π}{4}$-x)是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点$(\frac{3π}{2},0)$对称
C.奇函数且它的图象关于点$(\frac{3π}{2},0)$对称
D.奇函数且它的图象关于点(π,0)对称

分析 根据函数f(x)的对称性求出b=-a,然后求出函数$y=f(\frac{3π}{4}-x)$的解析式,根据三角函数的性质进行判断即可.

解答 解:∵函数f(x)的图象关于直线$x=\frac{π}{4}$对称,
∴f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(a-b)=$±\sqrt{{a}^{2}+{b}^{2}}$,
平方得a2+2ab+b2=0,
即(a+b)2=0,
则a+b=0,b=-a,
则f(x)=asinx+acosx=$\sqrt{2}a$sin(x+$\frac{π}{4}$),又a≠0,
则$y=f(\frac{3π}{4}-x)$=$\sqrt{2}a$sin($\frac{3π}{4}$-x+$\frac{π}{4}$)=$\sqrt{2}a$sin(π-x)=$\sqrt{2}a$sinx为奇函数,
且图象关于点(π,0)对称,
故选:D.

点评 本题主要考查三角函数的性质的应用,根据函数的对称性求出b=-a是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.甲、乙两人约定在7:00~8:00之间在某处会面,且他们在这一时间段内任一时刻到达该处的可能性均相等,则他们中先到者等待的时间不超过15分钟的概率是(  )
A.$\frac{9}{16}$B.$\frac{1}{2}$C.$\frac{7}{16}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}满足${a}_{3}^{2}$+${a}_{8}^{2}$+2a3a8=9,则其前10项和(  )
A.15B.12C.±12D.±15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a>b>c,n∈N,且$\frac{1}{a-b}+\frac{1}{b-c}≥\frac{n^2}{a-c}$恒成立,则n的最大值是(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若sin2α=$\frac{1}{4}$,$\frac{π}{4}$<α<$\frac{π}{2}$,则cosα-sinα的值(  )
A.$\frac{3}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{3}{4}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列{an}中的a1,a4031是函数f(x)=$\frac{1}{3}{x^3}-4{x^2}$+12x+1的极值点,则log2a2016(  )
A.3B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的导数:
(1)f(x)=x3cosx
(2)f(x)=$\frac{x^2}{x+1}$
(3)f(x)=ln(3x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a,b的值;
(2)若对任意实数m∈(0,+∞),不等式f(x)>4ex(x+1)-m(x2+2)-2x恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且满足条件(2+b)(sinA-sinB)=(c-b)sinC.求:
(1)$\overrightarrow{BA}•\overrightarrow{AC}$的最小值;
(2)若△ABC的周长为2($\sqrt{3}$+1),求角B.

查看答案和解析>>

同步练习册答案