精英家教网 > 高中数学 > 题目详情
已知命题p:关于x的方程x2+2x+a=0有实数解,命题q:关于x的不等式x2+ax+a>0的解集为R,若(?p)∧q是真命题,求实数a的取值范围.
考点:复合命题的真假,二次函数的性质
专题:函数的性质及应用,简易逻辑
分析:先由(?p)∧q是真命题,得p为假命题且q为真命题,然后分类讨论求解p,q,得实数a的取值范围.
解答: 解:因为(?p)∧q是真命题,
所以?p和q都为真命题,即p为假命题且q为真命题,
①若p为假命题,则△1=4-4a<0,即a>1,
②若q为真命题,则2=a2-4a<0
所以0<a<4,
由①②知,实数a的取值范围是{a|1<a<4}.
点评:本题考察复合命题的真假判定,和二次函数的性质,属于基础题目,注意逻辑联结词的使用即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an=2-
1
an-1
(n≥2,n∈N*
(1)求a2,a3,a4
(2)试猜想{an}的通项公式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+1,(-1≤x<0)
cosx,(0≤x≤
π
2
)
的图象与x轴所围成的封闭图形的面积为(  )
A、1
B、
3
2
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=3,a3=6则a5的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若三点A(2,3),B(5,0),C(0,b)(b≠0)共线,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在(0,+∞)上是减函数的是(  )
A、y=2x
B、y=-5x+3
C、y=-x2+2x
D、y=log3x

查看答案和解析>>

科目:高中数学 来源: 题型:

a、b为实数且b-a=2,若多项式函数f (x)在区间(a,b)上的导数f′(x)满足f′(x)<0,则一定成立的关系式是(  )
A、f (a)<f (b)
B、f (a+1)>f (b-
1
2
C、f (a+1)>f (b-1)
D、f (a+1)>f (b-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x||x-1|<1},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A、[0,1]
B、(1,2)
C、[1,2)
D、(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x-a
 的定义域是[1,+∞),则实数a=
 

查看答案和解析>>

同步练习册答案