精英家教网 > 高中数学 > 题目详情
19.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(  )
A.若m∥α,n∥β,m⊥n,则α⊥βB.若m∥n,n∥α,α∥β,则m∥β
C.α∥β,m⊥α,n∥β⇒m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥α

分析 在A中,α与β平行或相交;在B中,m∥β或m?β;在C中,由线面垂直的性质定理得m⊥n;在D中,m与α相交、平行或m?α.

解答 解:由α,β为不重合的平面,m,n为不重合的直线,知:
在A中,若m∥α,n∥β,m⊥n,则α与β平行或相交,故A错误;
在B中,若m∥n,n∥α,α∥β,则m∥β或m?β,故B错误;
在C中,α∥β,m⊥α,n∥β⇒m⊥n,由线面垂直的性质定理得m⊥n,故C正确;
在D中,若α⊥β,α∩β=n,m⊥n,则m与α相交、平行或m?α,故D错误.
故选:C.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,D,E分别为AB,BC的中点,点F在侧棱BB1上,且A1F⊥B1D,求证:
(Ⅰ)直线DE∥平面A1C1F;
(Ⅱ)B1D⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.
(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;
(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“α=30°”是“sinα=$\frac{1}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E的中心在原点,焦点在x轴上,且椭圆的焦距为2,离心率为e=$\frac{{\sqrt{2}}}{2}$﹒
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点(1,0)作直线l交E于P、Q两点,试问:在x轴上是否存在一个定点M,使$\overrightarrow{MP}•\overrightarrow{MQ}$为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线ax+by=r2与圆x2+y2=r2没有公共点,则点P(a,b)与圆的位置关系是(  )
A.在圆上B.在圆内C.在圆外D.以上皆有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,三角形ABC为等腰直角三角形,AC=BC=$\sqrt{2}$,AA1=1,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)二面角B1-CD-B的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mx3+nx(x∈R).若函数f(x)的图象在点x=3处的切线与直线24x-y+1=0平行,函数f(x)在x=1处取得极值,
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在[-2,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一条渐近线过点(1,-1),则E的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案