精英家教网 > 高中数学 > 题目详情
10.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.
(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;
(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.

分析 (1)计算所有事件数已经满足条件的事件数,利用古典概型公式求之;
(2)设两人到达的时间分别为9点到10点之间的x分钟、y分钟.用(x,y)表示每次试验的结果,分别,x,y范围表示满足条件的事件,利用几何概型的概率公式得到所求.

解答 解:(1)从袋中6个球中无放回的摸出2个,试验的结果共有6×5=30种,中奖的情况分为两种:
(i)2个球都是红色,包含的基本事件数为2×1=2;
(ii)2个球都是白色,包含的基本事件数为4×3=12.
所以,中奖这个事件包含的基本事件数为14.
因此,中奖概率为$\frac{7}{15}$.…(6分)
(2)设两人到达的时间分别为9点到10点之间的x分钟、y分钟.
用(x,y)表示每次试验的结果,则所有可能结果为Ω={(x,y)|0≤x≤40,20≤y≤60};
记甲比乙提前到达为事件A,则事件A的可能结果为A={(x,y)|x<y,0≤x≤40,20≤y≤60}.
如图所示,试验全部结果构成区域Ω为正方形ABCD.而事件A所构成区域是正方形内的阴影部分.
根据几何概型公式,得到P(A)=$\frac{4{0}^{2}-\frac{1}{2}×2{0}^{2}}{4{0}^{2}}$=$\frac{7}{8}$.
所以,甲比乙提前到达的概率为$\frac{7}{8}$.…(12分)

点评 本题考查了古典概型和几何概型的概率求法;关键字明确事件的表达方式,利用相关的公式解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C的对边分别为a,b,c,且$\frac{a-b}{c}$=$\frac{sinB+sinC}{sinB+sinA}$.
(1)求角A的大小;
(2)若a=$\sqrt{7}$,b=2c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(3,-4).
(1)求($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)的值;
(2)求向量$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C在x轴的上方,且曲线C上的任意一点到点F(0,1)的距离比到直线y=-2的距离都小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)设m>0,过点M(0,m)的直线与曲线C相交于A,B两点.
①若△AFB是等边三角形,求实数m的值;
②若$\overrightarrow{FA}•\overrightarrow{FB}<0$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设点P(x,y)是曲线a|x|+b|y|=1(a>0,b>0)上任意一点,其坐标(x,y)也满足$\sqrt{{x}^{2}+{y}^{2}+2x+1}$+$\sqrt{{x}^{2}+{y}^{2}-2x+1}$≤2$\sqrt{2}$,则$\sqrt{2}$a+b取值范围为(  )
A.(0,2]B.[1,2]C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以(1,-1)为圆心且与直线$x+y-\sqrt{6}=0$相切的圆的方程为(  )
A.(x+1)2+(y-1)2=6B.(x-1)2+(y+1)2=6C.(x+1)2+(y-1)2=3D.(x-1)2+(y+1)2=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$f(x)=2+log_2^x,x∈[{\frac{1}{4},4}]$,试求y=[f(x)]2+f(x2)的值域[1,13].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(  )
A.若m∥α,n∥β,m⊥n,则α⊥βB.若m∥n,n∥α,α∥β,则m∥β
C.α∥β,m⊥α,n∥β⇒m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有一批材料可以建成80m的围墙,若用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的小矩形(如图所示),且围墙厚度不计,则围成的矩形的最大面积为(  )
A.200m2B.360m2C.400m2D.480m2

查看答案和解析>>

同步练习册答案