精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角A、B、C的对边分别为a,b,c,且$\frac{a-b}{c}$=$\frac{sinB+sinC}{sinB+sinA}$.
(1)求角A的大小;
(2)若a=$\sqrt{7}$,b=2c,求△ABC的面积.

分析 (1)由条件利用正弦定理可得b2+c2-a2=-bc,再利用余弦定理求得cosA的值,可得A的值.
(2)由条件利用余弦定理求得c的值,可得△ABC的面积为$\frac{1}{2}$bc•sinA 的值.

解答 解:(1)△ABC中,角A、B、C的对边分别为a,b,c,且$\frac{a-b}{c}$=$\frac{sinB+sinC}{sinB+sinA}$=$\frac{b+c}{b+a}$,
化简可得b2+c2-a2=-bc,∴cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=-$\frac{1}{2}$,∴A=$\frac{2π}{3}$.
(2)∵△ABC中,a=$\sqrt{7}$,b=2c,∴a2=b2+c2-2bc•cosA=5c2-4c•(-$\frac{1}{2}$)=7,
∴c=1,∴△ABC的面积为$\frac{1}{2}$bc•sinA=$\frac{1}{2}$•2•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题主要考查正弦定理和余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知任意两个向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,若$\overrightarrow{OA}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{OC}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OD}$=$\overrightarrow{a}$-$\overrightarrow{b}$,则下列结论正确的是(  )
A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1且z=2x+y}\\{y≥-1}\end{array}\right.$的 最大值=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}的前n项和为Sn,已知$\frac{{2{S_n}}}{3}-{3^{n-1}}$=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{{{{log}_3}{a_n}}}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5=x5,则a2=(  )
A.$\frac{5}{4}$B.$\frac{5}{8}$C.$\frac{5}{16}$D.$\frac{5}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z=$\frac{2-i}{i}$(i为虚数单位)的共轭复数是(  )
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线l:mx-y+1-m=0,m∈R,若直线l是过抛物线y2=8x的焦点,则m=-1;此时直线l被圆(x-1)2+(y-1)2=6截得的弦长|AB|=2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,D,E分别为AB,BC的中点,点F在侧棱BB1上,且A1F⊥B1D,求证:
(Ⅰ)直线DE∥平面A1C1F;
(Ⅱ)B1D⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.
(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;
(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.

查看答案和解析>>

同步练习册答案