精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=xlnx+a,g(x)=$\frac{1}{2}$x2+ax,其中a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)也相切,求a的值;
(Ⅱ)?x>1,f(x)+$\frac{1}{2}$<g(x)恒成立,求a的取值范围.

分析 (Ⅰ)求出f(x)的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)问题转化为xlnx+a+$\frac{1}{2}$-$\frac{1}{2}$x2-ax<0在(1,+∞)恒成立,令h(x)=xlnx+a+$\frac{1}{2}$-$\frac{1}{2}$x2-ax,(x>1),求出h(x)的导数,通过讨论a的范围,确定函数的单调性,求出a的范围即可.

解答 解:(Ⅰ)f′(x)=lnx+1,
f(1)=a,f′(1)=1,
∴f(x)在(1,f(1))处的切线方程是:
y-a=(x-1),整理得:x-y+a-1=0;
由$\left\{\begin{array}{l}{y={\frac{1}{2}x}^{2}+ax}\\{y=x+a-1}\end{array}\right.$得:
$\frac{1}{2}$x2+(a-1)x-a+1=0,
∴△=(a-1)2-4•$\frac{1}{2}$(-a+1)=0,
解得:a=±1;
(Ⅱ)?x>1,f(x)+$\frac{1}{2}$<g(x)恒成立,
即xlnx+a+$\frac{1}{2}$-$\frac{1}{2}$x2-ax<0在(1,+∞)恒成立,
令h(x)=xlnx+a+$\frac{1}{2}$-$\frac{1}{2}$x2-ax,(x>1),
h′(x)=lnx-x+1-a,h″(x)=$\frac{1}{x}$-1,
∴h′(x)在(1,+∞)递减,且h′(1)=-a,
①a<0时,存在x0∈(1,+∞),使得h′(x0)=0,
此时h′(x)在(1,x0)上恒大于0,
∵h(1)=0,
∴h(x)在(1,x0)上恒大于h(1)不合题意;
②a>0时,h′(x)恒小于0,h(x)<h(1)=0成立;
③a=0时,同②,h(x)在(1,+∞)递减,
∴h(x)<h(1)=0,
综上:a≥0.

点评 本题考查了曲线的切线方程,考查函数的单调性、最值问题,导数的应用,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥3}\\{x-2y≤0}\end{array}\right.$,则z=x+2y的最小值为(  )
A.-4B.5C.4D.无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,如果输入a=$\sqrt{3}$,b=1,那么输出的b值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于函数f(x)=sin2x,下列说法错误的是①③④.
①f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是递增的;
②f(x)的图象关于原点对称;
③f(x)的最小正周期为2π;
④f(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=$\frac{{x}^{2}+ax-2}{{x}^{2}-x+1}$的值域[-2,2],则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=x2-bx-2.
(Ⅰ)当b=1,写出函数y=|f(x)|单调递增区间;
(Ⅱ)定义g(x)=$\left\{\begin{array}{l}{|f(x)|,x≥0}\\{f(x),x<0}\end{array}\right.$,若函数y=g(x)-$\frac{1}{2}$b在[-2,2]上有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在数列{an}中,a1=1,an+1=$\frac{{a}_{n}^{2}}{t{a}_{n}+2}$
(Ⅰ)若t=0,求数列{an}的通项公式;
(Ⅱ)若t=1,求证:$\frac{2}{3}≤\frac{2{a}_{1}}{{a}_{1}+2}+\frac{4{a}_{2}}{{a}_{2}+2}+\frac{6{a}_{3}}{{a}_{3}+2}+…+\frac{2n{a}_{n}}{{a}_{n}+2}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知边长为3的等边三角形ABC的三个顶点都在以O为球心的球面上,若三棱锥O-ABC的体积为$\frac{3\sqrt{3}}{4}$,则球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在△ABC中,B=$\frac{π}{4}$,AC=2$\sqrt{5}$,cosC=$\frac{{2\sqrt{5}}}{5}$.
(1)求sin∠BAC的值及BC的长度;
(2)设BC的中点为D,求中线AD的长.

查看答案和解析>>

同步练习册答案