精英家教网 > 高中数学 > 题目详情
已知直线a,b异面, ,给出以下命题:①一定存在平行于a的平面
使;②一定存在平行于a的平面使;③一定存在平行于a的平面使;④一定存在无数个平行于a的平面与b交于一定点.则其中论断正确的是(      )
A.①④B.②③C.①②③D.②③④
D

试题分析:若直线不是异面垂直则不可能存在平行于a的平面使,所以①不正确;②③④正确;故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.

(1)求证:AD⊥PB;
(2)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点.
 
(1)求证:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)求直线AB1与平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.

(1)求证:BD⊥AB1
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,四边形为正方形,四边形是直角梯形,平面

(1)求证:平面
(2)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是(  )
A.α⊥β,且m?α B.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四棱锥P-ABCD的底面为正方形,侧面PAD为等边三角形,且侧面PAD⊥底面ABCD.点M在底面内运动,且满足MP=MC,则点M在正方形ABCD内的轨迹


A.                 B.                C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体AC1中,若点P在对角线AC1上,且P点到三条棱CD 、A1D1、 BB1的距离都相等,则这样的点共有  (   )
A.1 个        B.2 个      C.3 个         D.无穷多个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两条异面直线所成的角为,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有(    )
A.12对B.18对C.24对D.30对

查看答案和解析>>

同步练习册答案