【题目】如图,三棱柱的所有棱长均为2,平面平面, , 为的中点.
(1)证明: ;
(2)若是棱的中点,求二面角的余弦值.
【答案】(1)见解析;(2) 所以二面角的余弦值为.
【解析】试题分析:(1)证线线垂直,由平面平面得平面,再由底面图形得线线垂直.(2)建系求面的法向量,得法向量的夹角.
解:
(1)证明:取中点,设与交于点,连接, ,依题意得,
因为平面平面,平面平面, ,
所以平面,即平面,所以,
又因为四边形为菱形,所以,又,所以平面,
而平面,所以.
(2)解:由(1)结合已知得: , , ,
以为原点,如图所示建立空间直角坐标系,因为侧面是边长为2的菱形,且,
所以, , , , ,
所以, , ,
设平面的法向量为,
则由得,令,可取,
而平面的一个法向量,由图可知二面角为锐角,
因为.
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成组第组,第组,第组,第组,第组,得到的频率分布直方图如图所示,已知第组有人.
(1)求该组织的人数;
(2)若在第组中用分层抽样的方法抽取名志愿者参加某社区的宣传活动,应从第组各抽取多少名志愿者?
(3)在(2)的条件下,该组织决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组至少有名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)设直线与轴, 轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:
每件产品A | 每件产品B | ||
研制成本、搭载 | 20 | 30 | 计划最大资金额 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:
x | |||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为 ,当 时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,AB⊥BC, ,
E,F分别是A1C1,BC的中点.
(Ⅰ)求证:C1F∥平面ABE;
(Ⅱ)求三棱锥E-ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问5分,(2)小问7分)
如图,椭圆的左、右焦点分别为过的直线交椭圆于两点,且
(1)若,求椭圆的标准方程
(2)若求椭圆的离心率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是( )
A.
B.
C.[3,+∞)
D.(0,3]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com