精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC,则sinA-cos(B+)的最大值为(  )

A. B.2 C. D.2

 

D

【解析】由正弦定理得sinCsinA=sinAcosC.因为0<A<π,所以sinA>0,从而sinC=cosC.又cosC≠0,所以tanC=1,又0<C<π,故C=,于是sinA-cos(B+)=sinA-cos(π-A)=sinA+cosA=2sin(A+),又0<A<,所以<A+<,从而当A+=,即A=时,2sin(A+)取最大值2.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-4数系的扩充与复数的引入(解析版) 题型:填空题

已知复数z=+(a2-5a-6)i(a∈R)为实数,则a=________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-1向量的概念及运算(解析版) 题型:选择题

BC是单位圆A的一条直径,F是线段AB上的点,且=2,若DE是圆A中绕圆心A运动的一条直径,则·的值是(  )

A.- B.- C.- D.不确定

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-8解三角形应用举例(解析版) 题型:解答题

如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-8解三角形应用举例(解析版) 题型:选择题

要测量底部不能到达的东方明珠电视塔的高度,在黄埔江西岸选择C、D两观测点,在C、D两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔底与C地连线及C、D两地连线所成的角为120°,C、D两地相距500 m,则电视塔的高度是(  )

A.100 m B.400 m C.200 m D.500 m

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-7正弦定理和余弦定理(解析版) 题型:填空题

在△ABC中,a,b,c分别是角A,B,C的对边,已知cos2A-3cos(B+C)=1,若△ABC的面积S=5,b=5,则c的值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-7正弦定理和余弦定理(解析版) 题型:选择题

已知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=,则角C为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-5两角和与差的正弦、余弦和正切(解析版) 题型:解答题

已知函数f(x)=6cos2sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.

(1)求ω的值及函数f(x)的值域;

(2)若f(x0)=,且x0∈(-),求f(x0+1)的值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-3三角函数的图象与性质(解析版) 题型:选择题

函数f(x)=cos(ωx+φ)对任意的x∈R,都有f(-x)=f(+x),若函数g(x)=3sin(ωx+φ)-2,则g()的值是(  )

A.1 B.-5或3 C.-2 D.

 

查看答案和解析>>

同步练习册答案