精英家教网 > 高中数学 > 题目详情
已知定义域为的函数是奇函数.
(Ⅰ)求值;
(Ⅱ)判断并证明该函数在定义域R上的单调性;
(Ⅲ)设关于的函数有零点,求实数的取值范围.
(Ⅰ)=1.(Ⅱ)f(x)在R上为减函数..(Ⅲ).

试题分析:(Ⅰ)根据奇函数的定义域为R可求出的值.(Ⅱ)已知函数式化简后计算会简单些,通过单调性的定义证明函数在R上是递减的.(Ⅲ)通过第二步的单调性可得两个变量要相等,求出b的范围.本题包含了函数的奇偶性的知识,单调性的知识,同时对单调性做了一个应用.综合性较强难度不算大.第三步的范围有一定的难度,最后转化为根的存在性所以b应该大于或等于的最小值,这个解题思想要理解把握.
试题解析:(Ⅰ)因为f(x)的定义域为R且为奇函数,所以f(0)=0,解得=1,经检验符合.
(Ⅱ),f(x)在R上为减函数下:设在R上为减函数. .所以f(x)在R上为减函数.
(Ⅲ)因为F(x)=0,所以有解.所以b=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的值;
(Ⅱ)判断并证明函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数满足时,总有.若则实数的取值范围是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在R上的奇函数且单调递减,若,则的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的图象向右平移个单位后关于对称,当时,<0恒成立,设,则的大小关系为(   )
A.c>a>bB.c>b>aC.a>c>b D.b>a>c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,满足“对任意(0,),当<时,>的是 (       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是定义在上的奇函数,且当时,,若对任意,不等式恒成立,则实数的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知不等式对于恒成立,则实数的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定义在上的函数是最小正周期为的偶函数,的导函数,当时,;当时 ,,则函数上的零点个数为(        )
A.2B.4C.5D.8

查看答案和解析>>

同步练习册答案