精英家教网 > 高中数学 > 题目详情
6.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,数列{bn}的通项公式为${b_n}={8^{n-1}}$且b2S2=64,b3S3=960.
(1)求数列{an}的通项公式an
(2)求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$.

分析 (1)利用两个等式得到关于公差d是方程组解之;
(2)利用(1)的结论得到前n项和为Sn,利用裂项相消求和.

解答 解:(1)设等差数列{an}的公差为d(d>0),则由题意,b1=1,b2=8,b3=64,所以$\left\{\begin{array}{l}{8(6+d)=64}\\{64(9+3d)=640}\end{array}\right.$解得:d=2,∴an=2n+1;
(2)由(1)可得:${S_n}={n^2}+2n$
∴$\frac{1}{S_n}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$
∴$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}=\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})=\frac{3}{4}-\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$.

点评 本题考查了等差数列与等比数列的通项公式以及裂项相消法求数列的和;比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{{2}^{x}-1}{\sqrt{lo{g}_{\frac{1}{2}}(3-2x)+1}}$的定义域是($\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=|$\frac{1}{3}$x-lnx|,若关于x的方程f(x)=mx有4个不同的解,则实数m的取值范围为(0,$\frac{1}{e}$-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)若AB=AC=AP=2,设D,E分别为棱AC,AP的中点,F为△ABD内一点,且满足$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$,求直线BD与EF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知在直三棱柱ABC-A1B1C1中,CA=CC1=2CB,∠ACB=90°,则直线BC1与AB1夹角的余弦值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x<1}\\{-2x+3,x≥1}\end{array}\right.$,则f[f(2)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若某市8所中学参加中学生比赛的得分用茎叶图表示(如图)其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(  )
A.91、5B.91、5.5C.92、5.5D.92、5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P(x,y)在不等式$\left\{\begin{array}{l}2x+y≥4\\ x-y≥0\\ x-2y≤2\end{array}\right.$所确定的平面区域内,则z=3x-y的最小值为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=\frac{lg(x+1)}{x}$的定义域是(  )
A.(-1,0)∪(0,+∞)B.[-1,0)∪(0,+∞)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

同步练习册答案