精英家教网 > 高中数学 > 题目详情
14.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)若AB=AC=AP=2,设D,E分别为棱AC,AP的中点,F为△ABD内一点,且满足$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$,求直线BD与EF所成角的大小.

分析 (I)由PA⊥平面ABC,可得PA⊥AC.利用线面垂直的判定与性质定理即可证明.
(II)建立如图所示的空间直角坐标系.利用向量夹角公式即可得出.

解答 (I)证明:∵PA⊥平面ABC,AC?平面ABC,∴PA⊥AC.
又AB⊥AC,AB∩PA=A.
∴AC⊥平面PAB,AB?平面ABC,
∴AC⊥AB.
(II)解:建立如图所示的空间直角坐标系.
则A(0,0,0),C(2,0,0),B(0,2,0),P(0,0,2),
D(1,0,0),E(0,0,1),
$\overrightarrow{DA}$=(-1,0,0),$\overrightarrow{DB}$=(-1,2,0),
∴$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$=$(-\frac{2}{3},\frac{2}{3},0)$.
$\overrightarrow{AF}$=$\overrightarrow{AD}$+$\overrightarrow{DF}$=$(\frac{1}{3},\frac{2}{3},0)$.
∴$\overrightarrow{EF}$=$(\frac{1}{3},\frac{2}{3},-1)$.
∴cos$<\overrightarrow{BD},\overrightarrow{EF}>$=$\frac{\overrightarrow{BD}•\overrightarrow{EF}}{|\overrightarrow{BD}||\overrightarrow{EF}|}$=$\frac{-1}{\sqrt{5}×\sqrt{\frac{1}{9}+\frac{4}{9}+1}}$=-$\frac{3\sqrt{70}}{70}$.
∴异面直线BD与EF所成角为$arccos\frac{{3\sqrt{70}}}{70}$.

点评 本题考查了向量夹角公式、异面直线所成的角、数量积运算性质、线面垂直的判定与性质定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.通渭弘泰市政公司冠名资助我校2016级实验班,该公司每月按出厂价每件3元购进一种小产品,根据以前的数据统计,若零售价定为每件4元,每月可销售400件,若零售价每降低(升高)0.5元,则可多(少)销售40件,每月的进货全部销售完.
(1)写出售价x与利润y函数的解析式;
(2)销售价应定为多少元/件,利润最大?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,过F2作y轴的平行线交椭圆于M、N两点,若|MN|=3,且$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=\frac{7}{4}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题中,真命题是④ (填代号)
①p:?x0∈R,${e^{x_0}}≤0$;
②q:?x∈R,x2-4x+4>0;
③“a,b,c成等比数列”的充分不必要条件是“b2=ac”;
④在△ABC中,“sinA>sinB”是“A>B”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:若一条直线与两个相交平面分别平行,则这条直线与两个平面的交线平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(2x+3)的定义域为[0,1),则f(x+1)的定义域为[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,数列{bn}的通项公式为${b_n}={8^{n-1}}$且b2S2=64,b3S3=960.
(1)求数列{an}的通项公式an
(2)求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC,若存在△A1B1C1,满足$\frac{cosA}{sin{A}_{1}}$=$\frac{cosB}{cos{B}_{1}}$=$\frac{cosC}{sin{C}_{1}}$=1,则称△A1B1C1是△ABC的一个“友好”三角形.若等腰△ABC存在“友好”三角形,则其顶角的度数为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的图象是连续不断的,有如下x,f(x)对应值表:
x123456
f(x)132.5210.5-7.5611.5-53.76-126.8
函数f(x)在区间[1,6]上有零点至少有(  )
A.6个B.5个C.4个D.3个

查看答案和解析>>

同步练习册答案