分析 (I)由PA⊥平面ABC,可得PA⊥AC.利用线面垂直的判定与性质定理即可证明.
(II)建立如图所示的空间直角坐标系.利用向量夹角公式即可得出.
解答 (I)证明:∵PA⊥平面ABC,AC?平面ABC,∴PA⊥AC.![]()
又AB⊥AC,AB∩PA=A.
∴AC⊥平面PAB,AB?平面ABC,
∴AC⊥AB.
(II)解:建立如图所示的空间直角坐标系.
则A(0,0,0),C(2,0,0),B(0,2,0),P(0,0,2),
D(1,0,0),E(0,0,1),
$\overrightarrow{DA}$=(-1,0,0),$\overrightarrow{DB}$=(-1,2,0),
∴$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$=$(-\frac{2}{3},\frac{2}{3},0)$.
$\overrightarrow{AF}$=$\overrightarrow{AD}$+$\overrightarrow{DF}$=$(\frac{1}{3},\frac{2}{3},0)$.
∴$\overrightarrow{EF}$=$(\frac{1}{3},\frac{2}{3},-1)$.
∴cos$<\overrightarrow{BD},\overrightarrow{EF}>$=$\frac{\overrightarrow{BD}•\overrightarrow{EF}}{|\overrightarrow{BD}||\overrightarrow{EF}|}$=$\frac{-1}{\sqrt{5}×\sqrt{\frac{1}{9}+\frac{4}{9}+1}}$=-$\frac{3\sqrt{70}}{70}$.
∴异面直线BD与EF所成角为$arccos\frac{{3\sqrt{70}}}{70}$.
点评 本题考查了向量夹角公式、异面直线所成的角、数量积运算性质、线面垂直的判定与性质定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 3 | 4 | 5 | 6 |
| f(x) | 132.5 | 210.5 | -7.56 | 11.5 | -53.76 | -126.8 |
| A. | 6个 | B. | 5个 | C. | 4个 | D. | 3个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com