精英家教网 > 高中数学 > 题目详情
2.下列命题中,真命题是④ (填代号)
①p:?x0∈R,${e^{x_0}}≤0$;
②q:?x∈R,x2-4x+4>0;
③“a,b,c成等比数列”的充分不必要条件是“b2=ac”;
④在△ABC中,“sinA>sinB”是“A>B”的充要条件.

分析 由指数函数的值域判断①;举例说明②、③错误;由正弦定理及三角形中大边对大角判断④.

解答 解:对于①,∵ex>0,∴命题p:?x0∈R,${e^{x_0}}≤0$为假命题;
对于②,∵x=2时,x2-4x+4=0,∴命题q:?x∈R,x2-4x+4>0为假命题;
对于③,02=0×1,但0,0,1不是等比数列,∴“a,b,c成等比数列”的充分不必要条件是“b2=ac”为假命题;
对于④,在△ABC中,由正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}$,可得由sinA>sinB?a>b?A>B,∴“sinA>sinB”是“A>B”的充要条件,故④为真命题.
故答案为:④.

点评 本题考查命题的真假判断与应用,考查了全程命题与特称命题的真假判断,考查充分必要条件的判定方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若直线l的倾斜角是直线2x-y+4=0的倾斜角的两倍,则直线l的斜率为$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下四个命题中,正确的有(  )
①两个底面平行且相似,其余各面都是梯形的多面体是棱台;
②有两个面平行,其余各面都是平行四边形的几何体叫做棱柱;
③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;
④一个棱锥的各条棱长都相等,那么这个棱锥一定不是六棱锥.
A.①②④B.②③C.D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=2x2-x4的极小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=|$\frac{1}{3}$x-lnx|,若关于x的方程f(x)=mx有4个不同的解,则实数m的取值范围为(0,$\frac{1}{e}$-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若g(x)=-2x2+5x-7,则g(-1)=-14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)若AB=AC=AP=2,设D,E分别为棱AC,AP的中点,F为△ABD内一点,且满足$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$,求直线BD与EF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x<1}\\{-2x+3,x≥1}\end{array}\right.$,则f[f(2)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的两个焦点F1,F2,点P在椭圆上,则△PF1F2的面积最大值一定是(  )
A.a2B.abC.$a\sqrt{{a^2}-{b^2}}$D.$b\sqrt{{a^2}-{b^2}}$

查看答案和解析>>

同步练习册答案