精英家教网 > 高中数学 > 题目详情
5.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,过F2作y轴的平行线交椭圆于M、N两点,若|MN|=3,且$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=\frac{7}{4}$,求椭圆方程.

分析 由题意求出M、N的坐标,求得|MN|,再求得$\overrightarrow{{F}_{1}M}、\overrightarrow{{F}_{1}N}$的坐标,结合$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=\frac{7}{4}$列方程组求得a,b的值,则椭圆方程可求.

解答 解:令x=c,代入椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,解得$y=±\frac{b^2}{a}$,
∴M,N的坐标分别是$({c,\frac{b^2}{a}}),({c,-\frac{b^2}{a}})$,
∴$|{MN}|=\frac{{2{b^2}}}{a}$=3,①
$\overrightarrow{{F_1}M}=(2c,\frac{b^2}{a})$,$\overrightarrow{{F_1}N}=(2c,-\frac{b^2}{a})$,则$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=4{c^2}-\frac{b^4}{a^2}=\frac{7}{4}$.②
联立①②,解得a=2,$b=\sqrt{3}$,
∴所求椭圆方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.

点评 本题考查椭圆的简单性质,考查了平面向量在解圆锥曲线问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+2mx+3是偶函数,则实数m的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{{2}^{x}-1}{\sqrt{lo{g}_{\frac{1}{2}}(3-2x)+1}}$的定义域是($\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下四个命题中,正确的有(  )
①两个底面平行且相似,其余各面都是梯形的多面体是棱台;
②有两个面平行,其余各面都是平行四边形的几何体叫做棱柱;
③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;
④一个棱锥的各条棱长都相等,那么这个棱锥一定不是六棱锥.
A.①②④B.②③C.D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)的定义域为(0,+∞),若对任意x1>0,x2>0,均有f(x1+x2)=f(x1)+f(x2),
且f(8)=3,则f(2)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=2x2-x4的极小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=|$\frac{1}{3}$x-lnx|,若关于x的方程f(x)=mx有4个不同的解,则实数m的取值范围为(0,$\frac{1}{e}$-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)若AB=AC=AP=2,设D,E分别为棱AC,AP的中点,F为△ABD内一点,且满足$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$,求直线BD与EF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P(x,y)在不等式$\left\{\begin{array}{l}2x+y≥4\\ x-y≥0\\ x-2y≤2\end{array}\right.$所确定的平面区域内,则z=3x-y的最小值为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

同步练习册答案