精英家教网 > 高中数学 > 题目详情
8.已知f(x)的定义域为(0,+∞),若对任意x1>0,x2>0,均有f(x1+x2)=f(x1)+f(x2),
且f(8)=3,则f(2)=$\frac{3}{4}$.

分析 由已知得f(8)=f(6)+f(2)=f(4)+2f(2)=f(2)+f(2)+2f(2)=4f(2)=3,由此能求出f(2).

解答 解:∵f(x)的定义域为(0,+∞),
对任意x1>0,x2>0,均有f(x1+x2)=f(x1)+f(x2),
且f(8)=3,
∴f(8)=f(6)+f(2)=f(4)+2f(2)=f(2)+f(2)+2f(2)=4f(2)=3,
∴f(2)=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列集合中,是空集的是(  )
A.{x|x+2=0}B.{x|x2+1=0,x∈R}C.{x|x<1}D.{(x,y)|y2=-x2,x,y∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2+bx(a、b是常数,且a≠0)满足条件:f(2)=0,且方程f(x)=x有两个相等实根.
(1)求f(x)的解析式并写出函数的值域;
(2)比较f(0)、f(1)、f(3)的大小;
(3)若x1<x2<1,比较f(x1)与f(x2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,AB=AC=2,BC=2$\sqrt{3}$,点D在BC上,∠ADC=75°,AD=(  )
A.$\sqrt{6}$B.$\sqrt{6}$-$\sqrt{2}$C.$\sqrt{3}+\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\vec a$,$\vec b$不共线向量,若向量$\overrightarrow{AB}$=2$\vec a$+k$\vec b$,$\overrightarrow{CB}$=$\vec a$+$\vec b$,$\overrightarrow{CD}$=2$\vec a$-$\vec b$,若A,B,D三点共线,则实数k的值等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,过F2作y轴的平行线交椭圆于M、N两点,若|MN|=3,且$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=\frac{7}{4}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组函数是同一函数的是(  )
①f(x)=$\frac{{x}^{2}-1}{x+1}$与g(x)=x-1;   
②f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$与g(x)=$\sqrt{{x}^{2}-1}$;
③f(x)=x0与g(x)=$\frac{1}{{x}^{0}}$;            
④f(x)=x2-2x-1与g(t)=t2-2t-1.
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:若一条直线与两个相交平面分别平行,则这条直线与两个平面的交线平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于x的不等式组$\left\{\begin{array}{l}{1≤k{x}^{2}+2}\\{x+k≤2}\end{array}\right.$有唯一实数解,则实数k的取值集合{$1+\sqrt{2}$,$\frac{1-\sqrt{5}}{2}$}.

查看答案和解析>>

同步练习册答案