精英家教网 > 高中数学 > 题目详情
6.为了解今年某省高三毕业班准备报考飞行员学生的体重情况,现采用随机抽样的方法抽取了一个样本容量为240的样本,并将所得的数据整理后,画出了如图所示的频率分布直方图(计算结果用分数表示).
(1)求a的值,并用该样本估计全省报考飞行员学生的体重的中位数;
(2)若以样本数据估计全省的总体数据,且从全省报考飞行员的学生中(人数很多)任选二人,设X表示体重超过60kg的学生人数,求X的分布列和数学期望.

分析 (1)根据频率和为1,列方程求出a的值,根据中位数两边的频率相等,求出中位数的值;
(2)计算一个报考学生体重超过60公斤的频率,用频率表示概率知X服从二项分布,计算对应的概率,写出随机变量X的分布列,计算数学期望值.

解答 解:(1)根据频率和为1,得
(0.025+a+0.075+0.0375+0.0125)×5=1,
解得a=0.05,
0.025×5+0.05×5=0.375<0.5,
0.375+0.075×5=0.75>0.5,
∴中位数位于60~65内,
设中位数为x,则(x-60)×0.075+0.375=0.5,
解得x=$\frac{185}{3}$,
∴估计全省报考飞行员学生体重的中位数为$\frac{185}{3}$;
(2)一个报考学生体重超过60公斤的频率为
(0.075+0.0375+0.0125)×5=$\frac{5}{8}$,
用频率表示概率知,p=$\frac{5}{8}$;
又X服从二项分布,且
P(X=k)=${C}_{2}^{k}$•${(\frac{5}{8})}^{k}$•${(1-\frac{5}{8})}^{2-k}$,k=0,1,2;
∴P(X=0)=${C}_{2}^{0}$•${(\frac{3}{8})}^{2}$=$\frac{9}{64}$,
P(X=1)=${C}_{2}^{1}$•$\frac{5}{8}$•$\frac{3}{8}$=$\frac{30}{64}$,
P(X=2)=${C}_{2}^{2}$•${(\frac{5}{8})}^{2}$=$\frac{25}{64}$;
随机变量X的分布列为:

X012
P$\frac{9}{64}$$\frac{30}{64}$$\frac{25}{64}$
则数学期望为EX=0×$\frac{9}{64}$+1×$\frac{30}{64}$+2×$\frac{25}{64}$=$\frac{5}{4}$.
(或EX=2×$\frac{5}{8}$=$\frac{5}{4}$).

点评 本题考查了频率分布直方图以及离散型随机变量的分布列和数学期望的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在平面内,定点A,B,C,O满足$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}$|=2,$\overrightarrow{OA}•(\frac{AC}{{|{\overrightarrow{AC}}|}}-\frac{AB}{{|{\overrightarrow{AB}}|}})$=$\overrightarrow{OB}•(\frac{BC}{{|{\overrightarrow{BC}}|}}-\frac{BA}{{|{\overrightarrow{BA}}|}})=0$,动点P,M满足$|{\overrightarrow{AP}}|=1,\overrightarrow{PM}=\overrightarrow{MC},则{|{\overrightarrow{BM}}|^2}$的最大值是(  )
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37}{4}$D.$\frac{37}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,且2x+5y=20.
(1)求u=lgx+lgy的最大值;
(2)求$\frac{1}{x}+\frac{1}{y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.长方体ABCD-A1B1C1D1中,$A{A_1}=\sqrt{2}$,AB=1,AD=2,E为BC的中点.设△A1DE的重心为G,问是否存在实数λ,使得$\overrightarrow{AM}=λ\overrightarrow{AD}$,且MG⊥平面A1DE同时成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(x2-$\frac{1}{x}$)n的二项展开式中的所有二项式系数和为64,则该二项式展开式中的常数项为(  )
A.20B.-15C.-20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,且点(-2,$\sqrt{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)若点B为椭圆的下顶点,直线l与椭圆C交于不同的两点P,Q(异于点B),直线BQ与BP的斜率之和为2,求证:直线l经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,x≤0\\{log_a}x(a>0,a≠1),x>0\end{array}$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(  )
A.($\frac{{\sqrt{5}}}{5}$,1)B.(0,$\frac{\sqrt{5}}{5}$)C.$(\frac{{\sqrt{3}}}{3}\;,\;\;1)$D.$(0\;,\;\;\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2=1},B={x|ax=1},若B?A,则a的值为{0,-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等差数列{an}的前n项和记为Sn,若S10=10,S30=60,则S40=100.

查看答案和解析>>

同步练习册答案