已知函数f(x)=2x3-3x.
(1)求f(x)在区间[-2,1]上的最大值;
(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;
(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)
解 (1)由f(x)=2x3-3x得f′(x)=6x2-3.
令f′(x)=0,得x=-
或x=
.
因为f(-2)=-10,
,
,f(1)=-1.
所以f(x)在区间[-2,1]上的最大值为
(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0).
则y0=2x
-3x0,且切线斜率为k=6x
-3,
所以切线方程为y-y0=(6x
-3)(x-x0).
因此t-y0=(6x
-3)(1-x0).
整理得4x
-6x
+t+3=0.
设g(x)=4x3-6x2+t+3,
则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.
g′(x)=12x2-12x=12x(x-1),
g(x)与g′(x)的情况如下:
![]()
所以g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.
当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.
当g(1)=t+1≥0,即t≥-1时,此时g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.
当g(0)>0且g(1)<0,即-3<t<-1时,因为g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点.
综上可知,当过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(-3,-1).
(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切;
过点B(2,10)存在2条直线与曲线y=f(x)相切;
过点C(0,2)存在1条直线与曲线y=f(x)相切.
科目:高中数学 来源: 题型:
已知函数f(x)=log4(4x+1)+kx(k∈R)为偶函数.
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一个根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( )
A.[-5,-3] B.![]()
C.[-6,-2] D.[-4,-3]
查看答案和解析>>
科目:高中数学 来源: 题型:
已知f′(x)是函数f(x)=x+
的导函数,则下列结论中正确的是( )
A.∃x0∈R,∀x∈R,且x≠0,f(x)≤f(x0)
B.∃x0∈R,∀x∈R,且x≠0,f(x)≥f(x0)
C.∃x0∈R,∀x∈(x0,+∞),f′(x)<0
D.∃x0∈R,∀x∈(x0,+∞),f′(x)>0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com