精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ax3+bx2+cx+d图象与y轴交点坐标为(0,4),其导函数y=f′(x)是以y轴为对称轴的抛物线,大致图象如图所示.
(I)求函数f(x)的解析式;
(II)求函数f(x)的极值.

分析 (I)求导数,利用条件建立方程组,即可求函数f(x)的解析式;
(II)求导数,确定函数的单调性,即可求函数f(x)的极值.

解答 解:(I)f(x)=ax3+bx2+cx+d,f′(x)=3ax2+2bx+c
由题意,得$\left\{\begin{array}{l}{f(0)=4}\\{b=0}\\{f′(-2)=0}\\{f′(0)=-4}\end{array}\right.$    …(2分)
解之,得a=$\frac{1}{3}$,b=0,c=-4,d=4,
所以,f(x)=$\frac{1}{3}$x3-4x+4 …(6分)
(II)f′(x)=x2-4,
令f′(x)>0,可得x<-2或x>2,f′(x)<0,可得-2<x<2,
∴函数的单调增区间是(-∞,-2),(2,+∞);单调减区间是(-2,2)
因此,f(x)极大值=f(-2)=$\frac{28}{3}$,f(x)极小值=f(x)=-$\frac{4}{3}$.…(12分)

点评 本题考查导数知识的综合运用,考查函数的单调性与极值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知直线l过点P(2,3),
(1)若直线l在x轴、y轴上的截距之和等于0,求直线l的方程;
(2)若直线l与两条坐标轴在第一象限所围成的三角形的面积为16,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求曲线y=$\frac{1}{x}$与直线y=x,x=2所围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x3+3x2+2的单调递减区间为(  )
A.(-2,+∞)B.(-∞,2)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将四位八进制数1000(8)转化为六进制为(  )
A.2120(6)B.3120(6)C.2212(6)D.4212(6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E点作EF⊥PB交PB于点F.求证:
(1)PA∥平面EDB;
(2)PB⊥平面EFD.
(3)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|y=log2(x-1)},B={x|x<2},则A∩B=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|1≤x<2}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2017(x)的表达式为f2017(x)=$\frac{x}{1+2017x}$.

查看答案和解析>>

同步练习册答案