精英家教网 > 高中数学 > 题目详情
15.两封信随机地投入到编号为A,B,C的三个空邮筒中,则A邮筒中信件数x的数学期望E(x)等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{4}{9}$

分析 由题意知ξ的取值有0,1,2,当ξ=0时,表示的事件是A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时的概率,用期望公式得到结果

解答 解:A邮筒中信件数X可能为0,1,2.
则P(X=0)=$\frac{2×2}{3×3}$=$\frac{4}{9}$,P(X=1)=$\frac{4}{9}$,P(X=2)=$\frac{1}{9}$,
其分布列为:

 X 0 1 2
 P $\frac{4}{9}$$\frac{4}{9}$ $\frac{1}{9}$
其数学期望E(X)=0+1×$\frac{4}{9}$+2×$\frac{1}{9}$=$\frac{2}{3}$.
故选:B.

点评 本题考查了古典概率计算公式及其随机变量的数学期望,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)左右焦点,它的离心率e=$\frac{{\sqrt{3}}}{2}$,且被直线y=$\frac{1}{2}({x+a})$所截得的线段的中点的横坐标为-1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(m,n)是其椭圆上的任意一点,当∠F1PF2为钝角时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,A1A=AD=1,
求:(1)A1C与平面ABCD所成角的大小;
(2)平面A1D1DA与平面A1D1CB所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知随机变量X的概率分布如下:
X1234
P0.10.40.20.3
则V(X)=1.01.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.随机变量X的概率分布如下表,则X的方差V(X)为$\frac{3}{4}$
X0123
P$\frac{1}{8}$$\frac{3}{8}$$\frac{3}{8}$a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙两人玩儿掷骰子游戏,游戏规则规定:若抛掷处的点数不少于3点,则抛掷者得1分,对方得0分,若抛掷出的点数少于3点,则抛掷者得0分,对方得1分,各次抛掷互相独立,并规定第一次由甲抛掷,第二次由乙抛掷,第三次再由甲抛掷,依次轮换抛掷.
(Ⅰ)求前3次抛掷甲得2分且乙得1分的概率;
(Ⅱ)ξ表示前3此抛掷乙的得分,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某高中毕业学年,在高校自主招生期间,把学生的平时成绩按“百分制”折算,排出前100名学生,并对这100名学生按成绩分组(从低到高依次分为第1组、第2组、第3组、第4组、第5组),其频率分布直方图如图:现Q大学决定在第3、4、5组中用分层抽样的方法抽取6名学生进行面试,且本次面试中有B、C、D三位考官.
(1)若规定至少获得两位考官的认可即面试成功,且面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为$\frac{1}{2},\frac{1}{3}$,$\frac{1}{4}$,求甲同学面试成功的概率;
(2)若Q大学决定在这6名学生中随机抽取3名学生接受考官B的面试,设第4组中有ξ名学生被考官B面试,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号码,写出随机变量ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD是矩形,BC⊥平面ABEF,四边形ABEF是梯形,∠EFA=∠FAB=90°,EF=FA=AD=1,点M是DF的中点,AB=2.
(Ⅰ)求证:BF∥平面AMC;
(Ⅱ)以A点为坐标原点,以AF,AB,AD分别为x,y,z轴建立空间直角坐标系,求二面角B-AC-E的余弦值.

查看答案和解析>>

同步练习册答案