精英家教网 > 高中数学 > 题目详情
4.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号码,写出随机变量ξ的分布列.

分析 根据题意得出随机变量ξ的取值为3,4,5;计算对应的概率值,写出ξ的分布列.

解答 解:随机变量ξ的取值为3,4,5;
P(ξ=3)=$\frac{{C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
P(ξ=4)=$\frac{{C}_{3}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,
P(ξ=5)=$\frac{{C}_{4}^{2}}{{C}_{5}^{3}}$=$\frac{6}{10}$=$\frac{3}{5}$;
因此ξ的分布列为

ξ345
P$\frac{1}{10}$$\frac{3}{10}$$\frac{6}{10}$

点评 本题考查了离散型随机变量的概率与分布列的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-ax2-3x.
(Ⅰ)若函数f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)若函数h(x)=2xlnx,对一切x∈(0,+∞),都有h(x)+$\frac{f(x)}{x}$≥-6恒成立,求a的取值范围;
(Ⅲ)若x=3是函数f(x)的极值点,是否存在实数b,使得函数g(x)=-7x+b的图象与函数f(x)的图象恰有1个交点?若存在,请求出实数b的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两封信随机地投入到编号为A,B,C的三个空邮筒中,则A邮筒中信件数x的数学期望E(x)等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为平面向量,且$\overrightarrow{a}$=(1,$\sqrt{2}$),$\overrightarrow{b}$=(x,y),|$\overrightarrow{b}$|=4.
(1)若$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为150°,求|2$\overrightarrow{a}+\overrightarrow{b}$|及|$\overrightarrow{a}-2\overrightarrow{b}$|;
(2)若$\overrightarrow{b}$是与$\overrightarrow{a}$平行的向量,求$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,60°的二面角棱上有A′,B′两点,直线AA′,BB′分别在这个二面角的半平面内,且都垂直于A′B′,已知A′B′=3,AA′=3,BB′=5,则AB的长度为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,点M是侧棱SC的中点.
(Ⅰ)求异面直线BM与CD所成角的大小;
(Ⅱ)求二面角S-AM-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.现有五个球分别记为A,C,J,K,S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若存在正数a和实数x0,使得f(x0+a)=f(x0)+a成立,则称区间[x0,x0+a]为函数f(x)的“公平增长区间”.则下列四个函数:
①f(x)=2x-1
②f(x)=||x|-1|,
③$f(x)=\sqrt{{x^2}-1}$,
④f(x)=$\sqrt{{x}^{2}-1}$-x,x∈[1,+∞)
其中有“公平增长区间”的为②④(填出所有正确结论的番号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若f(x)=$\frac{1}{2}$ax2+2x-lnx(a≠0)在区间[1,2]上是增函数,则实数a的最小值为(  )
A.1B.-1C.-$\frac{3}{4}$D.-2

查看答案和解析>>

同步练习册答案