分析 由已知得${\overrightarrow{AB}}^{2}$=($\overrightarrow{A{A}^{'}}+\overrightarrow{{A}^{'}{B}^{'}}+\overrightarrow{{B}^{'}B}$)2=${\overrightarrow{A{A}^{'}}}^{2}+{\overrightarrow{{A}^{'}{B}^{'}}}^{2}+{\overrightarrow{{B}^{'}B}}^{2}$+2|$\overrightarrow{A{A}^{'}}$|×|$\overrightarrow{{B}^{'}B}$|×cos120°,由此能求出AB的长度.
解答 解:∵60°的二面角棱上有A′,B′两点,
直线AA′,BB′分别在这个二面角的半平面内,且都垂直于A′B′,
A′B′=3,AA′=3,BB′=5,
∴${\overrightarrow{AB}}^{2}$=($\overrightarrow{A{A}^{'}}+\overrightarrow{{A}^{'}{B}^{'}}+\overrightarrow{{B}^{'}B}$)2=${\overrightarrow{A{A}^{'}}}^{2}+{\overrightarrow{{A}^{'}{B}^{'}}}^{2}+{\overrightarrow{{B}^{'}B}}^{2}$+2|$\overrightarrow{A{A}^{'}}$|×|$\overrightarrow{{B}^{'}B}$|×cos120°
=9+9+25-2×$3×5×\frac{1}{2}$=28,
∴AB的长度为|$\overrightarrow{AB}$|=2$\sqrt{7}$.
故答案为:2$\sqrt{7}$.
点评 本题考查空间中两点间距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{3}{8}$ | a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com