【题目】已知曲线
与曲线
恰好有两个不同的公共点,则实数
的取值范围是( )
A.
B.
C.
D.![]()
【答案】C
【解析】
利用绝对值的几何意义,由x=|y|﹣2可得,y≥0时,x=y﹣2;y<0时,x=﹣y﹣2,函数x=|y|﹣2的图象与方程y2+λx2=4的曲线必相交于(0,±2),为了使曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,则两曲线无其它交点.x=y﹣2代入方程y2+λx2=4,整理可得(1+λ)y2﹣4λy+4λ﹣4=0,分类讨论,可得结论,根据对称性,同理可得y<0时的情形.
解:由x=|y|﹣2可得,y≥0时,x=y﹣2;
y<0时,x=﹣y﹣2,
∴函数x=|y|﹣2的图象与方程y2+λx2=4的曲线必相交于(0,±2),
所以为了使曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,
则将x=y﹣2代入方程y2+λx2=4,
整理可得(1+λ)y2﹣4λy+4λ﹣4=0,
当λ=﹣1时,y=2满足题意,
∵曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,
∴△>0,2是方程的根,
∴
0,即﹣1<λ<1时,方程两根异号,满足题意;
综上知,实数λ的取值范围是[﹣1,1).
故选:C.
科目:高中数学 来源: 题型:
【题目】已知抛物线
,抛物线上的点
到焦点的距离为2.
![]()
(1)求抛物线的方程和
的值;
(2)如图,
是抛物线上的一点,过
作圆
的两条切线交
轴于
,
两点,若
的面积为
,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名
观众进行调查,其中有
名男观众和
名女观众,将这
名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在
分钟以上(包括
分钟)的称为“朗读爱好者”,收视时间在
分钟以下(不包括
分钟)的称为“非朗读爱好者”.
![]()
(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取
名,再从这
名观众中任选
名,求至少选到
名“朗读爱好者”的概率;
(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是数列
的前
项和,对任意
都有
成立(其中
是常数).
(1)当
时,求
:
(2)当
时,
①若
,求数列
的通项公式:
②设数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“
数列”,如果
,试问:是否存在数列
为“
数列”,使得对任意
,都有
,且
,若存在,求数列
的首项
的所有取值构成的集合;若不存在.说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
过点
,且直线
过
的左焦点.
![]()
(1)求
的方程;
(2)设
为
上的任一点,记动点
的轨迹为
,
与
轴的负半轴、
轴的正半轴分别交于点
,
的短轴端点关于直线
的对称点分别为
、
,当点
在直线
上运动时,求
的最小值;
(3)如图,直线
经过
的右焦点
,并交
于
两点,且
在直线
上的射影依次为
,当
绕
转动时,直线
与
是否相交于定点?若是,求出定点的坐标,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近
个月广告投入量
(单位:万元)和收益
(单位:万元)的数据如下表:
月份 |
|
|
|
|
|
|
广告投入量 |
|
|
|
|
|
|
收益 |
|
|
|
|
|
|
他们分别用两种模型①
,②
分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
|
|
|
|
|
|
|
|
![]()
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于
的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量
时,该模型收益的预报值是多少?
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定两个命题,p:对任意实数x都有x2+ax+1≥0恒成立;q:幂函数y=xa-1在(0,+∞)内单调递减;如果p与q中有且仅有一个为真命题,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com