精英家教网 > 高中数学 > 题目详情

【题目】已知曲线与曲线恰好有两个不同的公共点,则实数的取值范围是(

A.B.C.D.

【答案】C

【解析】

利用绝对值的几何意义,由x|y|2可得,y0时,xy2y0时,x=﹣y2,函数x|y|2的图象与方程y2+λx24的曲线必相交于(0,±2),为了使曲线C1|y|x2与曲线C2λx2+y24恰好有两个不同的公共点,则两曲线无其它交点.xy2代入方程y2+λx24,整理可得(1+λy24λy+4λ40,分类讨论,可得结论,根据对称性,同理可得y0时的情形.

解:由x|y|2可得,y0时,xy2

y0时,x=﹣y2

∴函数x|y|2的图象与方程y2+λx24的曲线必相交于(0,±2),

所以为了使曲线C1|y|x2与曲线C2λx2+y24恰好有两个不同的公共点,

则将xy2代入方程y2+λx24

整理可得(1+λy24λy+4λ40

λ=﹣1时,y2满足题意,

∵曲线C1|y|x2与曲线C2λx2+y24恰好有两个不同的公共点,

∴△>02是方程的根,

0,即﹣1λ1时,方程两根异号,满足题意;

综上知,实数λ的取值范围是[11).

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,抛物线上的点到焦点的距离为2

1)求抛物线的方程和的值;

2)如图,是抛物线上的一点,过作圆的两条切线交轴于两点,若的面积为,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.

(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;

(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图,在正方体中, 分别是的中点.

(1)求证:平面平面

(2)在棱上是存在一点,使得平面,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是数列的前项和,对任意都有成立(其中是常数).

1)当时,求

2)当时,

①若,求数列的通项公式:

②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是数列,如果,试问:是否存在数列数列,使得对任意,都有,且,若存在,求数列的首项的所有取值构成的集合;若不存在.说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆过点,且直线的左焦点.

1)求的方程;

2)设上的任一点,记动点的轨迹为轴的负半轴、轴的正半轴分别交于点的短轴端点关于直线的对称点分别为,当点在直线上运动时,求的最小值;

3)如图,直线经过的右焦点,并交两点,且在直线上的射影依次为,当转动时,直线是否相交于定点?若是,求出定点的坐标,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)讨论函数在区间上的极值点的个数;

(2)已知对任意的恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个命题,p:对任意实数x都有x2+ax+1≥0恒成立;q:幂函数y=xa-1在(0,+∞)内单调递减;如果pq中有且仅有一个为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案