分析 由已知得f(2012)=asin(2012π+α)+bcos(2012π+β)+4=asinα+bcosβ+4=6,从而asinα+bcosβ=2,由此能求出f(2013).
解答 解:∵f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均为非零实数),
f(2012)=6,
∴f(2012)=asin(2012π+α)+bcos(2012π+β)+4
=asinα+bcosβ+4=6,
∴asinα+bcosβ=2,
∴f(2013)=asin(2013π+α)+bcos(2013π+β)+4
=-asinα-bcosβ+4
=4-2
=2.
故答案为:2.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{e}$ | B. | 2e2 | C. | 2e | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | B. | [kπ,kπ+$\frac{π}{2}$](k∈Z) | C. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) | D. | [kπ-$\frac{π}{2}$,kπ](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100个吸烟者中至少有99人患有肺癌 | |
| B. | 1个人吸烟,那么这人有99%的概率患有肺癌 | |
| C. | 在100个吸烟者中一定有患肺癌的人 | |
| D. | 在100个吸烟者中可能一个患肺癌的人也没有 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{3}$d2 | B. | $\frac{20}{3}$d2 | C. | 10d2 | D. | 6d2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 解方程2x-6=0的过程是移项和系数化为1 | |
| B. | 从济南到温哥华要先乘火车到北京,再转乘飞机 | |
| C. | 解方程2x2+x-1=0 | |
| D. | 利用公式S=πγ2计算半径为3的圆的面积是计算π×32 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com