精英家教网 > 高中数学 > 题目详情
10.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A、B两点,若|AF|=3|BF|,求直线l的方程.

分析 由题意设出直线AB的方程,联立直线和抛物线方程,求出A,B的横坐标,由|AF|=3|BF|得到x1=3x2+2,代入A,B的坐标得答案.

解答 解:由y2=4x,得F(1,0),
设AB所在直线方程为y=k(x-1),
联立y2=4x,得k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2),
结合|AF|=3|BF|,
解方程得:x1=$\frac{{k}^{2}+2+2\sqrt{{k}^{2}+1}}{{k}^{2}}$,x2=$\frac{{k}^{2}+2+2\sqrt{{k}^{2}+1}}{{k}^{2}}$.
再由|AF|=3|BF|,
得x1+1=3(x2+1),即
x1=3x2+2,
∴$\frac{{k}^{2}+2+2\sqrt{{k}^{2}+1}}{{k}^{2}}$=3•$\frac{{k}^{2}+2+2\sqrt{{k}^{2}+1}}{{k}^{2}}$+2,
解得:k=±$\sqrt{3}$.
∴直线L的方程为y=$±\sqrt{3}$(x-1).

点评 本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了学生的计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若a=bcosC+csinB.则B=45°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,以双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上一点M为圆心的圆恰好与y轴相切,与x轴交于A,B两点,其中A是双曲线的右顶点,若△MAB是等边三角形,则该双曲线的离心率是(  )
A.2B.2$\sqrt{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点的极坐标是$(3,\frac{π}{4})$,则它的直角坐标是$(\frac{{3\sqrt{2}}}{2},\frac{{3\sqrt{2}}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,k).
(1)若($\overrightarrow{a}$+2$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),求k的值.
(2)若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均为非零实数),若f(2012)=6,则f(2013)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列结论中正确的有(2)
(1)若α,β是第一象限角,且α<β,则sinα<sinβ;
(2)函数y=sin(πx-$\frac{π}{2}$)是偶函数;
(3)函数y=sin(2x+$\frac{π}{6}$)的一个对称中心是($\frac{π}{6}$,0);
(4)函数y=sin(2x+$\frac{π}{3}$)在[0,$\frac{π}{6}$]上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点P(4,m)在以点F为焦点的抛物线$\left\{{\begin{array}{l}{x=4{t^2}}\\{y=4t}\end{array}}\right.$(t为参数)上,则|PF|等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=log3(9x)•log3(3x),$\frac{1}{9}$≤x≤9,则f(x)的最小值为-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案