分析 由f(x)=ax4+bx2+c的图象经过点(0,1)求得c=1,再由在x=1处的切线方程是y=x-2,得到f′(1)=1且f(1)=-1,联立求出a,b的值得答案.
解答 解:∵f(x)=ax4+bx2+c的图象经过点(0,1),
∴f(0)=c=1,
则f(x)=ax4+bx2+1,
f′(x)=4ax3+2bx,
又在x=1处的切线方程是y=x-2,
∴f′(1)=4a+2b=1,且f(1)=a+b+1=-1,解得$a=\frac{5}{2},b=-\frac{9}{2}$.
∴y=f(x)的解析式为f(x)=$\frac{5}{2}{x}^{4}-\frac{9}{2}{x}^{2}+1$.
故答案为:f(x)=$\frac{5}{2}{x}^{4}-\frac{9}{2}{x}^{2}+1$.
点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 16 | C. | 18 | D. | 31 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com