精英家教网 > 高中数学 > 题目详情
9.(B组题)关于圆周率π,数学发展史上出现过许多有创意的求法,最著名的属普丰实验和查理实验.受其启发,小彤同学设计了一个算法框图来估计π的值(如图).若电脑输出的j的值为43,那么可以估计π的值约为(  )
A.$\frac{79}{25}$B.$\frac{47}{15}$C.$\frac{157}{50}$D.$\frac{236}{75}$

分析 由试验结果知150对0~1之间的均匀随机数a,b,满足$\left\{\begin{array}{l}{0≤a≤1}\\{0≤b≤1}\end{array}\right.$,满足a2+b2≤1,且|a+b|≥1的点的面积为:$\frac{π}{4}$-$\frac{1}{2}$,由几何概型概率计算公式,得出所取的点在圆内的概率是$\frac{π}{4}$-$\frac{1}{2}$比正方形的面积,二者相等即可估计π的值.

解答 解:由题意,150对0~1之间的均匀随机数a,b,满足$\left\{\begin{array}{l}{0≤a≤1}\\{0≤b≤1}\end{array}\right.$,
满足a2+b2≤1,且|a+b|≥1的点的面积为:$\frac{π}{4}$-$\frac{1}{2}$,
因为共产生了150对[0,1]内的随机数(a,b),其中能使a2+b2≤1,且|a+b|≥1的有j=43对,
所以$\frac{43}{150}$=$\frac{π}{4}$-$\frac{1}{2}$,
所以π=$\frac{236}{75}$.
故选:D.

点评 本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数y=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在一个周期内的图象如图所示,且在$y轴上的截距为\sqrt{2}$,M,N分别是这段图象的最高点和最低点,
则$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影为(  )
A.$\frac{{\sqrt{29}}}{29}$B.$\frac{{\sqrt{5}}}{5}$C.-$\frac{{\sqrt{29}}}{29}$D.$-\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ax3-2x2+1,若f(x)存在唯一的零点x0,且x0<0,则实数a的取值范围为(  )
A.(2,+∞)B.(0,$\frac{\sqrt{6}}{9}$)C.(-∞,-$\frac{4\sqrt{6}}{9}$)D.($\frac{4\sqrt{6}}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个递增的等差数列{an}的前三项的和为-3,前三项的积为8.数列$\{\frac{b_n}{a_n}\}$的前n项和为${S_n}={2^{n+1}}-2$.
(1)求数列{an}的通项公式.
(2)求数列$\{\frac{b_n}{a_n}\}$的通项公式.
(3)是否存在一个等差数列{cn},使得等式${b_n}={c_{n+1}}•{2^{n+1}}-{c_n}•{2^n}$对所有的正整数n都成立.若存在,求出所有满足条件的等差数列{cn}的通项公式,并求数列{bn}的前n项和Tn;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直三棱柱ABC-A1B1C1中,AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=aln(x-a)-\frac{1}{2}{x^2}+x$(a<0).
(Ⅰ)当a=-3时,求f(x)的单调递减区间;
(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 $\left\{{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$( t为参数).
(Ⅰ)写出曲线C的直角坐标方程与直线l的普通方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求A,B两点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若一个圆锥的侧面展开图是面积为$\frac{9}{2}π$的半圆面,则该圆锥的体积为$\frac{9\sqrt{3}π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x2-4x-5>0},B={x|x>2},则集合A∩B=(  )
A.B.(-∞,1)C.(2,+∞)D.(5,+∞)

查看答案和解析>>

同步练习册答案