| A. | $\frac{{{e^x}({1-{e^{2014π}}})}}{{1-{e^{2π}}}}$ | B. | 10082π | ||
| C. | $\frac{{{e^{2x}}({1-{e^{2014π}}})}}{{1-{e^{2π}}}}$ | D. | 1008π |
分析 先求f′(x)=2exsinx,这样即可得到f(π),f(3π),f(5π),…,f(2015π)为f(x)的极大值,并且构成以eπ为首项,e2π为公比的等比数列,根据等比数列的求和公式求f(x)的各极大值之和即可.
解答 解:f′(x)=2exsinx;
x∈[0,(2k+1)π)时,f′(x)>0;x∈((2k+1)π,(2k+2)π)时,f′(x)<0,其中0≤k≤1007,且k∈N*;
∴f((2k+1)π)=e(2k+1)π是f(x)的极大值;
∴函数f(x)的各极大值之和为:
eπ+e3π+e5π+…+e2013π=$\frac{{e}^{π}(1-{e}^{2014π})}{{1-e}^{2π}}$.
故选A.
点评 考查极大值的定义,正弦、余弦,和积的导数的求导公式,以及等比数列的概念,等比数列的求和公式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$ | B. | 1<p<$\sqrt{2}$ | C. | 1<p<$\frac{\sqrt{6}}{2}$ | D. | 1<p<$\frac{\sqrt{6}}{2}$或$\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com