精英家教网 > 高中数学 > 题目详情
10.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sinA+sinC=psinB(p>0),且ac=$\frac{1}{4}$b2,若∠B为锐角,求p的取值范围是(  )
A.$\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$B.1<p<$\sqrt{2}$C.1<p<$\frac{\sqrt{6}}{2}$D.1<p<$\frac{\sqrt{6}}{2}$或$\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$

分析 已知第一个等式利用正弦定理化简,再利用基本不等式变形,将第二个等式代入求出p的范围,再由B为锐角,得出cosB的范围,利用余弦定理表示出cosB,整理变形后求出p的范围,综上,得出满足题意p的范围即可.

解答 解:已知等式sinA+sinC=psinB(p>0),利用正弦定理化简得:a+c=pb>2$\sqrt{ac}$,
把ac=$\frac{1}{4}$b2代入得:a+c=pb>b,即p>1,
∵B为锐角,
∴0<cosB<1,即0<$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}}{2ac}$-2<1,
∵$\frac{{a}^{2}+{c}^{2}}{2ac}$-2=$\frac{(a+c)^{2}}{2ac}$-3=2p2-3,
∴0<2p2-3<1,
解得:$\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$,
综上,p的取值范围为$\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$,
故选:A.

点评 此题考查了正弦、余弦定理,基本不等式的运用,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2(a+1)lnx-ax,g(x)=$\frac{1}{2}$x2-x.
(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;
(2)证明:若-1<a<7,则对于任意x1、x2∈(1,+∞),x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{g({x}_{1})-g({x}_{2})}$>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设正数a,b满足ab+a+b-15=0
(1)求ab的最大值;
(2)求4a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ex(sinx-cosx)(0≤x≤2015π),则函数f(x)的各极大值之和为(  )
A.$\frac{{{e^x}({1-{e^{2014π}}})}}{{1-{e^{2π}}}}$B.10082π
C.$\frac{{{e^{2x}}({1-{e^{2014π}}})}}{{1-{e^{2π}}}}$D.1008π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设(2x-i)5=a0+a1x+a2x2+…+a5x5(i是虚数单位),则|a0|+|a1|+…+|a5|=243.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cosα=$\frac{1}{3}$,cos(α+β)=1,求cos(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,且满足Sn=2an+(-1)n,n∈N*,则an=$\frac{{2}^{n-1}-2(-1)^{n}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x)=${x}^{\frac{1}{2}}$,若函数g(x)=f(x)-x-b有三个零点,则实数b的取值集合是(以下k∈Z)(  )
A.(2k-$\frac{1}{4}$,2k+$\frac{1}{4}$)B.(2k+$\frac{1}{2}$,2k+$\frac{5}{2}$)C.(4k-$\frac{1}{4}$,4k+$\frac{1}{4}$)D.(4k+$\frac{1}{2}$,4k+$\frac{9}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,ABCD为等腰梯形,且AD∥BC,E为BC的中点,AB=AD=BE,沿DE将△CDE折起成四棱锥C-ABED.
(1)设点O为ED的中点,问在棱AC上是否存在一点M使得OM∥平面CBE,并证明你的结论;
(2)若AB=2,求四棱锥C-ABED体积的最大值.

查看答案和解析>>

同步练习册答案