精英家教网 > 高中数学 > 题目详情
7.已知全集U=R,集合A={x|3≤x<6},B={x|x<2或x≥4}.
(1)分别求A∩B,(∁UB)∪A;
(2)已知C={x|x>a},若C⊆B,求实数a的取值范围.

分析 (1)根据集合A,B的范围求出其交集即可,再求出B的补集,从而求出其补集与A的交集;(2)根据集合的包含关系求出即可.

解答 解:(1)∵集合A={x|3≤x<6},B={x|x<2或x≥4},
∴A∩B={x|4≤x<6},
∵全集U=R,
∴∁UB={x|2≤x<4},
∴(∁UB)∪A={x|3≤x<4};
(2)∵B={x|x<2或x≥4},C={x|x>a},且C⊆B,
∴a≥4.

点评 本题考查了集合的运算,考查了集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足|$\overrightarrow{M{F}_{1}}$|=2|$\overrightarrow{MO}$|=2|$\overrightarrow{M{F}_{2}}$|,则椭圆的离心率e=(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ex(sinx-cosx)(0≤x≤2015π),则函数f(x)的各极大值之和为(  )
A.$\frac{{{e^x}({1-{e^{2014π}}})}}{{1-{e^{2π}}}}$B.10082π
C.$\frac{{{e^{2x}}({1-{e^{2014π}}})}}{{1-{e^{2π}}}}$D.1008π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cosα=$\frac{1}{3}$,cos(α+β)=1,求cos(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,且满足Sn=2an+(-1)n,n∈N*,则an=$\frac{{2}^{n-1}-2(-1)^{n}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某高二文科学生在参加理、化、生三门课程的学业水平测试中,取得A等级的概率分别为$\frac{2}{3}$、$\frac{3}{5}$、$\frac{2}{5}$,且三门课程的成绩是否取得A等级相互独立.记X为该生取得A等级的课程数,其分布列如表所示,则数学期望EX=$\frac{5}{3}$.
X0123
P$\frac{2}{25}$ab$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x)=${x}^{\frac{1}{2}}$,若函数g(x)=f(x)-x-b有三个零点,则实数b的取值集合是(以下k∈Z)(  )
A.(2k-$\frac{1}{4}$,2k+$\frac{1}{4}$)B.(2k+$\frac{1}{2}$,2k+$\frac{5}{2}$)C.(4k-$\frac{1}{4}$,4k+$\frac{1}{4}$)D.(4k+$\frac{1}{2}$,4k+$\frac{9}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.球内有一内接正方体的棱长为$\sqrt{6}$,求球的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长方体长、宽、高分别为20m、5m、10m,四棱锥的高为8m,若按1:500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为4cm;1cm;2cm;1.6cm.

查看答案和解析>>

同步练习册答案