精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且满足:

(Ⅰ)求数列的通项公式;

(Ⅱ)若存在,使得 成等差数列,试判断:对于任意的,且是否成等差数列,并证明你的结论.

【答案】(1) (2)见解析

【解析】试题分析:(1)由和项与通项关系得递推式: ,再根据叠乘法可得数列的通项公式;注意分段讨论n=1与(2)由 成等差数列,得,即得,所以 ,即得,即得结论

试题解析:(Ⅰ)由已知:,两式相减得,又

时,由已知,所以 ,于是

所以数列成等比数列,即当

综上数列的通项公式为

(Ⅱ)对于任意的,且成等差数列,证明如下:

时,若存在 N*,使得成等差数列,则2=+

,由(Ⅰ)知数列的公比,于是对于任意的N*,且

;所以2=+成等差数列;

综上:对于任意的,且成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的函数,并且满足下面三个条件:①对任意正数,都有;②当时, ;③.

(1)求 的值;

(2)证明上是减函数;

(3)如果不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,设.

(1)求函数的最小正周期;

(2)由的图象经过怎样变换得到的图象?试写出变换过程;

(3)当时,求函数的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区客栈的工作人员为了控制经营成本,减少浪费,合理安排入住游客的用餐,他们通过统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:

①每年相同的月份,入住客栈的游客人数基本相同;

②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;

③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.

(1)若入住客栈的游客人数与月份之间的关系可用函数 )近似描述,求该函数解析式;

(2)请问哪几个月份要准备不少于400人的用餐?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列中,已知,且成等比数列.

(1)求数列的通项公式;

(2)设数列的前项和为,记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某汽车品牌一个月内被消费者投诉的次数用表示,据统计,随机变量的概率分布如下:

(1)求的值;

(2)假设一月与二月被消费者投诉的次数互不影响,求该汽车品牌在这两个月内被消费者投诉次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知命题定义域是命题第一象限为增函数,若“”为假,“”为真,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论正确的是( )

A. 月接待游客逐月增加

B. 年接待游客量逐年减少

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客相对于7月至12月,波动性更大,变化比较明显

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题有________.(写出所有真命题的序号)

①若a,b,c∈R,则“ac2>bc2是“a>b”成立的充分不必要条件;

②命题“x0∈R,x+x0+1<0”的否定是“x∈R,x2+x+1≥0”

③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”

④函数f(x)=ln x+x-在区间(1,2)上有且仅有一个零点.

查看答案和解析>>

同步练习册答案