分析 由椭圆的定义及余弦定理即可求得|PF1|•|PF2|=4,根据向量的数量积即可求得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$.
解答 解:由椭圆的方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,则a=2,b=$\sqrt{3}$,c=1,
可得焦点F1(-1,0),F2(1,0),
设|PF1|=m,|PF2|=n,
由椭圆的定义可得m+n=4,
由∠F1PF2=60°,利用余弦定理可得(2c)2=m2+n2-2mncos60°,
∴m2+n2-mn=4,
联立$\left\{\begin{array}{l}{m+n=4}\\{{m}^{2}+{n}^{2}-mn=4}\end{array}\right.$,
化为mn=4,即|PF1|•|PF2|=4
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=|PF1|•|PF2|cos60°=4×$\frac{1}{2}$=2.
故答案为:2.
点评 本题考查椭圆的标准方程,余弦定理,向量的数量积,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | 2 | C. | $\frac{4}{3}$ | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 高一 | 高二 | 总计 | |
| 合格人数 | 70 | x | 150 |
| 不合格人数 | y | 20 | 50 |
| 总计 | 100 | 100 | 200 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{17}}}{17}$ | B. | $\frac{{3\sqrt{2}}}{5}$ | C. | $\frac{{3\sqrt{17}}}{34}$ | D. | $\frac{{2\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com