精英家教网 > 高中数学 > 题目详情
3.设A={x|x>2},B={x|x<a},A∩B=∅,并且二次函数f(x)=x2+ax在[2,+∞)是单调递增的函数.
(1)若函数f(x)是偶函数,求a的值;
(2)求a的取值范围.

分析 (1)令对称轴-$\frac{a}{2}$=0得出;
(2)根据单调性得出对称轴与2的关系,根据A,B无交集得出a与2的关系,从而解出a的范围.

解答 解:(1)若f(x)=x2+ax是偶函数,
则f(x)的对称轴为直线x=0,
∴a=0.
(2)∵A∩B=∅,∴a≤2,
∵f(x)=x2+ax在[2,+∞)是单调递增的函数,
∴-$\frac{a}{2}$≤2,即a≥-4,
∴-4≤a≤2.

点评 本题考查了二次函数单调性、对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)写出命题p的否定?p,命题q的否定?q;
(2)若?p∨?q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高三共有三个班,其各班人数如表:
班级男生数女生数总数
高三(1)302050
高三(2)303060
高三(3)352055
(1)从三个班中选一名学生会主席,有多少种不同的选法?
(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将点的极坐标(2,$\frac{π}{6}$)化为直角坐标为($\sqrt{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.
(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆x2+y2=$\frac{1}{16}$没有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.P为双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$右支上一点,F1,F2分别为双曲线的左、右焦点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直线PF2交y轴于点A,则△AF1P的内切圆半径为(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.P为椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上一点,F1、F2为该椭圆的两个焦点,若∠F1PF2=60°,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)计算:$\frac{{(1-i)+(2+\sqrt{5}i)}}{i}$(其中i为虚数单位);
(2)若复数Z=(2m2+m-1)+(4m2-8m+3)i,(m∈R)的共轭复数$\overline Z$对应的点在第一象限,求实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC是边长为2的等边三角形,$A\vec B•A\vec C$=2.

查看答案和解析>>

同步练习册答案