精英家教网 > 高中数学 > 题目详情
5.在△ABC中,BC=a,AC=b,a,b是方程x2-2$\sqrt{3}$x+2=0的两个根,且2cos(A+B)=1.则角C的大小(  )
A.60°B.90°C.120°D.180°

分析 运用内角和定理和诱导公式,结合特殊角的三角函数值,即可得到C.

解答 解:cosC=cos[π-(A+B)]
=-cos(A+B)=-$\frac{1}{2}$,
由0°<C<180°,
则C=120°.
故选:C.

点评 本题考查诱导公式和三角形的内角和定理的运用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图,在直角△ABC中,AC=3,BC=4,∠C=90°,CD⊥AB,DE⊥BC,D,E为垂足,则DE=$\frac{48}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数y=f(x)在区间(a,b)上的导函数f′(x),f′(x)在区间(a,b)上的导函数f″(x),若在区间(a,b)上f″(x)<0,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凸函数”,则实数m的取值范围是(  )
A.(-∞,$\frac{23}{9}$)B.[-3,$\frac{23}{9}$]C.[$\frac{23}{9}$,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an},若存在两项am,an使得aman=a32,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{9}{4}$D.$\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=lnx-x2的极值情况为(  )
A.无极值B.有极小值,无极大值
C.有极大值,无极小值D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC利用斜二测画法画出的直观图是边长为2的正三角形,则△ABC的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)看看我们生活中的挂历:横看、竖看、斜看,都是天然的等差数列.随意框选9个数,如图1,可以发现12等于周围8个数之和的八分之一.请用所学数学知识对此作出简要的说明.

(2)如图2,在框选出4×4的方框中,第一行的四个数字依次为4,5,6,7.甲乙丙三人从这16个数中各挑选出一个数字,甲选中的数字是18,并删去18所在的行和列;乙在5与12这两个数中任意挑选一个数,记为x,再删去x所在的行和列;丙在27与28这两个数中任意挑选一个数,记为y,再删去y所在的行和列;最后剩下的一个数记为w,试列式计算以说明这四个数18,x,y,w之和是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,若采用系统抽样(等距抽样),已知最后一个入样编号是7894,则开头第一个个入样编号是0054.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α、β∈(0,π),且tanα、tanβ是方程x2+5$\sqrt{3}$x+6=0的两根.
(Ⅰ)求α+β的值;
(Ⅱ)求cos(α-β)的值.

查看答案和解析>>

同步练习册答案