分析 设AB方程y=$\sqrt{3}$(x-1),与抛物线方程y2=4x联立,求出A,B的坐标,利用夹角公式求出tan∠AMB.
解答 解:抛物线C:y2=4x的焦点F(1,0),M(-1,0),设AB方程y=$\sqrt{3}$(x-1),
y=$\sqrt{3}$(x-1),与y2=4x联立可得3x2-10x+3=0
可得x=$\frac{1}{3}$或3,
∴A($\frac{1}{3}$,-$\frac{2\sqrt{3}}{3}$),B(3,2$\sqrt{3}$),
∴kAM=-$\frac{\sqrt{3}}{2}$,kBM=$\frac{\sqrt{3}}{2}$
∴tan∠AMB=$\frac{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}{1+\frac{\sqrt{3}}{2}•(-\frac{\sqrt{3}}{2})}$=4$\sqrt{3}$.
故答案为:4$\sqrt{3}$.
点评 本题考查直线与抛物线的位置关系,考查差角的正切公式,正确求出A,B的坐标是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,e4) | B. | (e4,+∞) | C. | (-∞,0) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2×(31008-1) | B. | 2×31008 | C. | $\frac{{{3^{2016}}-1}}{2}$ | D. | $\frac{{{3^{2016}}+1}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{27}$ | B. | $\frac{4}{9}$ | C. | $\frac{8}{27}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com