精英家教网 > 高中数学 > 题目详情
4.已知定义在R上的函数y=f(x)的导函数为f′(x),且满足f′(x)<f(x),f(0)=1,则不等式$\frac{f(x)}{{e}^{x}}$<1的解集为(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.

解答 解:设g(x)=$\frac{f(x)}{{e}^{x}}$(x∈R),
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f′(x)<f(x),
∴f′(x)-f(x)<0
∴g′(x)<0,
∴y=g(x)在定义域上单调递减
∵$\frac{f(x)}{{e}^{x}}$<1
∴g(x)<1
又∵g(0)=$\frac{f(0)}{{e}^{0}}$=1
∴g(x)<g(0)
∴x>0
故选:D.

点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=(  )
A.1B.2C.lg2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“函数f(x)=kx-3在[-1,1]上有零点”是“k≥3”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{asinx+3(x+2)^{2}}{{x}^{2}+4}$(a是不为0的常数),当x∈[-2,2]时,函数f(x)的最大值与最小值的和为(  )
A.a+3B.6C.2D.3-a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,如果sinA:sinB:sinC=3:4:5,那么cosA=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线C:y2=4x的准线与x轴交于M,过焦点F作倾斜角为60°的直线与C交于A,B两点,则tan∠AMB=4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A、B、C,则平行四边形ABCD的对角线BD所对应的复数是7-11i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示程序框图,则输出的n为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(1,2)在抛物线C:y2=2px上,过点A作两条直线分别交抛物线于点D、E,直线AD,AE的斜率分别为kAD,kAE
(1)求抛物线C的方程;
(2)若直线DE经过点(-1,-2),求KAD•KAE的值.

查看答案和解析>>

同步练习册答案