精英家教网 > 高中数学 > 题目详情
19.在△ABC中,如果sinA:sinB:sinC=3:4:5,那么cosA=$\frac{4}{5}$.

分析 sinA:sinB:sinC=3:4:5,由正弦定理可得:a:b:c=3:4:5,不妨取a=3,b=4,c=5,再利用余弦定理即可得出.

解答 解:∵sinA:sinB:sinC=3:4:5,
由正弦定理可得:a:b:c=3:4:5,
不妨取a=3,b=4,c=5,
那么cosA=$\frac{{4}^{2}+{5}^{2}-{3}^{2}}{2×4×5}$=$\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题考查了正弦定理、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,其一条渐近线为x+$\sqrt{2}$y=0,点M在双曲线上,且MF1⊥x轴,若F2同时为抛物线y2=12x的焦点,则F1到直线F2M的距离为(  )
A.$\frac{{3\sqrt{6}}}{5}$B.$\frac{{5\sqrt{6}}}{6}$C.$\frac{5}{6}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=x2与x=1及坐标轴围成的封闭区域为Ω1,不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域为Ω2,在区域Ω2内随机取一点,则该点是取自于区域Ω1的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,AD∥BC,且AD=2BC,AD⊥CD,PA=PD,M为棱AD的中点.
(1)求证:CD∥平面PBM;
(2)求证:平面PAD⊥平面PBM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示;
(1)求ω,φ;
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为($\frac{π}{3}$,0),求θ的最小值.
(3)对任意的x∈[$\frac{π}{4}$,$\frac{5π}{6}$]时,方程f(x)=m有两个不等根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数y=f(x)的导函数为f′(x),且满足f′(x)<f(x),f(0)=1,则不等式$\frac{f(x)}{{e}^{x}}$<1的解集为(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|x+2|,g(x)=a-|x-4|,若函数f(x)的图象恒在函数g(x)的图象的上方,则实数a的取值范围是(-∞,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=2px(p>0)的焦点是F,点D(1,y0)是抛物线C上的点,且|$\overrightarrow{DF}$|=3.
(1)若直线l经过点E(1,2)交抛物线C于A、B两点,当AE=4EB时,求直线l的方程;
(2)已知点M(m,0)(m>0),过点M作直线l1交抛物线C于P、Q两点,G是线段PQ的中点,过点M作与直线l1垂直的直线l2交抛物线C于S、T两点,H是线段ST的中点(如图所示),求△MGH面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的不等式ax2+x+b>0的解集是(-1,2),则a+b=1.

查看答案和解析>>

同步练习册答案